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Abstract: Background: Stem cells have attracted the researchers interest, due to their applications in
regenerative medicine. Their self-renewal capacity for multipotent differentiation, and immunomodu-
latory properties make them unique to significantly contribute to tissue repair and regeneration appli-
cations. Recently, stem cells have shown increased proliferation when irradiated with low-level laser
therapy or Photobiomodulation Therapy (PBMT), which induces the activation of intracellular and
extracellular chromophores and the initiation of cellular signaling. The purpose of this study was to
evaluate this phenomenon in the literature.

Methods: The literature investigated the articles written in English in four electronic databases of
PubMed, Scopus, Google Scholar and Cochrane up to April 2019. Stem cell was searched by combin-
ing the search keyword of "low-level laser therapy" OR "low power laser therapy" OR "low-intensity
laser therapy" OR "photobiomodulation therapy" OR "photo biostimulation therapy" OR "LED". In
total, 46 articles were eligible for evaluation.
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Results: Studies demonstrated that red to near-infrared light is absorbed by the mitochondrial respira-
tory chain. Mitochondria are significant sources of reactive oxygen species (ROS). Mitochondria play
an important role in metabolism, energy generation, and are also involved in mediating the effects
induced by PBMT. PBMT may result in the increased production of (ROS), nitric oxide (NO), adeno-
sine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP). These changes, in turn, initi-
ate cell proliferation and induce the signal cascade effect.

Conclusion: The findings of this review suggest that PBMT-based regenerative medicine could be a
useful tool for future advances in tissue engineering and cell therapy.

Keywords: Stem cell, low-level laser therapy, regenerative medicine, photobiomodulation, mesenchymal stem cells.

1. INTRODUCTION Laser therapy has been used as a therapeutic modality to
treat pathological tissue conditions such as different wounds
to control inflammatory processes, and also to promote tissue
healing [4]. It has been indicated that cellular proliferation
and viability could be induced under laser irradiation. The
molecular mechanism can be described by intensifying the
formation of a transmembrane electromechanical proton gra-
dient in mitochondria. Subsequently, more calcium is re-
leased into the cytoplasm from the mitochondria [5]. At low
laser doses, this additional calcium transported into the cyto-
plasm triggers mitosis and enhances cell proliferation. It is
well known that photobiomodulation increases ATP produc-
tion, which activates Na, K-ATPase, and other ion carriers.
Moreover, the synthesis of DNA and RNA, production of

Mesenchymal stem cells (MSC) have been used in regen-
erative medicine and tissue engineering in order to replace
the conventional therapeutic modalities. These cells have the
ability to differentiate into one of many different specialized
cell types and have self-renewing properties under controlled
in vitro conditions. Sources of stem cells include bone mar-
row [1], adipose tissue, dental pulp and umbilical cord [2].
Recent applications of stem cell therapy include not only
bone marrow transplants for leukemia treatment, but also
include the treatment of spinal cord injuries, Parkinson’s
disease, heart disease, multiple sclerosis and cancer [3].
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reactive oxygen species (ROS), nitric oxide (NO) release,
cytochrome ¢ oxidase activation, and expression of stress
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proteins are other cellular signaling cascades, which are gen-
erated by low power laser irradiation [6].

It has been indicated that low-level laser irradiation in-
duces stem cell activity by increasing the proliferation, mi-
gration, viability of activated protein expression, and induc-
ing differentiation in progenitor cells [7].

Regenerative medicine has the ability to transform the
treatment of human diseases by introducing combined, inno-
vative new therapies such as stem cell and LLLT that offer
faster, complete recovery and reduce the risks of donor organ
transplantation rejection through autologous grafts.

Studies in this area are few and contradictory. The pre-
sent study reviewed the articles to develop an understanding
of the effect of PBM on MSCs, to help design more accurate
studies in the field of PBM.

2. STEM CELL CLASSIFICATION

Stem cells are non-specialized cells in the human body.
They can be differentiated in each cell of an organism, and
also have the ability to renew themselves. Stem cells are
present in both the embryos and adult cells (Fig. 1) [8]. Em-
bryonic stem cells (ESCs) are involved in whole-body de-
velopment. They are derived from the inner cell mass of pre-
implantation embryos. Moreover, they can be differentiated
into pluripotent, totipotent, multipotent, and unipotent cells
[9]. Pluripotent stem cells (PSCs) form the cells of all germ
layers, but not extraembryonic structures, such as the pla-
centa. Accordingly, another example is induced pluripotent
stem cells (iPSCs) derived from the epiblast layer of im-
planted embryos [10]. Totipotent stem cells can be divided
and differentiated into the total cells of the organism. Totipo-
tency has the highest potential for differentiation and allows
cells to form embryonic and extra-embryonic structures. One
example of a totipotent cell is a zygote, which is formed after
a sperm fertilizes an egg [11]. Multipotent stem cells have a
narrower spectrum of differentiation in comparison with
PSCs, however, they can be specialized in discrete cells of
specific cell lineages. One example is a haematopoietic stem
cell, which can be developed into several types of blood
cells. After differentiation, a haematopoietic stem cell be-
comes an oligopotent cell. Oligopotent stem cells can be
differentiated into several cell types. A myeloid stem cell is
an example that can be divided into white blood cells, not in
red blood cells. Unipotent stem cells are characterized by the
narrowest differentiation capabilities and special property of
repeatedly dividing, which make them able to be used in
therapeutic applications such as regenerative medicine.

Stem Cell Types
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Unipotent stem cells are able to form one cell type, such as
dermatocytes. Somatic or adult stem cells are undifferenti-
ated and found among differentiated cells in the whole body
after development. Among many types, mesenchymal stem
cells are present in many tissues. In bone marrow, these cells
are mainly differentiated into the bone, cartilage, and fat
cells. As stem cells, they are exceptions, because they act
pluripotently and can be specialized in the cells of any germ
layer [12].

2.1. Mesenchymal Stem Cells and Regenerative Medicine

Mesenchymal stem cells (MSCs), discovered by Frieden-
stein in 1976, are adult stem cells found in the whole body,
which could share a fixed set of characteristics. Their own
characteristics are preserved, which means that they remain
multipotent and undifferentiated, with the capability of self-
renewal and differentiation into multiple cell lines, including
osteogenic, chondrogenic, adipogenic, and myogenic linea-
ges, under specific in vitro conditions [13].

The unique regenerative abilities of stem cells offer new
potential for treating some diseases like diabetes and heart
disease. However, many studies and investigations remain to
be done, to understand how to use these cells for cell-based
therapies to treat disease [8]. Differentiation is the process
whereby unspecialized stem cells change into specialized
cells. Differentiation is a multi-step process where the differ-
entiating cells become more specialized with each step. Un-
derstanding the effects of inside and outside cell signals is
the main interest of research, which can clarify the differen-
tiation process. The stimulus for MSCs differentiation must
be efficient, resulting in viable and functional cells that pro-
duce extracellular matrix. This functionality is highly impor-
tant for cellular characterization and applications in regen-
erative medicine [14]. These are internal and external induc-
ers promoting cell proliferation and differentiation to regen-
erate the new tissue. The internal signals are controlled by a
cell’s genes. The external signals for cell differentiation in-
clude chemicals and materials released by surrounding cells,
physical contact with neighboring cells, certain molecules in
the microenvironment and physicochemical stimulants on
stem cells, such as electromagnetic fields [15-18] or low
light level laser stimulation/photobiomodulation [19, 20].

3. LASER THERAPY

Laser (Light Amplification by Stimulated Emission of
Radiation) can be used as a therapeutic device, which pro-
duces monochromatic (one specific wavelength), coherent

Source of origin

l Differentiation potentials |

[] 11
l Adult I l Embryonic | l PIuripotentI l Totipotent | lMuItipotentI lOIigopotentI l Unipotent |

Fig. (1). Stem cell classification.
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(constant phase) and polarized (directional) light. Lasers are
divided into several classes, based on their power and wave-
lengths. Therapeutic lasers are low-level lasers for therapy
with power less than 500 mW, and High-Intensity Laser with
power 500 mW and more [5].

3.1. Low-level Laser Therapy (LLLT)

The most usual Low-Level Laser Therapy (LLLT) pro-
cedures are carried out by irradiation of low-level or low-
powered lasers to sites of injury in order to speed up the cel-
lular processes resulting in better healing and decreased in-
flammation and pain [21]. Almost all LLLT treatments refer
to the use of red-beam or near infra-red lasers (600-1100
nm), with an output power of 1-1000 mW. This type of ra-
diation is a continuous wave or pulsed light, which consists
of a constant beam of relatively low energy density (0.04-50
J/em2). LLLT procedures are non-invasive, non-thermal and
allowing light to penetrate tissue, in order to reach the target
tissue, which deals with photochemical effects, and this
means that the light is absorbed by biological systems and
causes biophysical chemical changes in organs [6, 22].
Schneede et al., also reported a temperature increase of less
than 0.065°C, with laser irradiation of 40 mW/cm®, using a
micro thermal probe in a monolayer of cells [23]. A number
of different laser light sources, including helium-neon, ruby,
and gallium aluminum- arsenide, have been used to deliver
LLLT in different treatments and on different schedules.

3.2. High-intensity Laser Therapy (HILT)

High-intensity Laser Therapy technology is based on the
well-known principle of low-level laser therapy (LLLT).
High power and choice of the right wavelength allow deep
tissue penetration. HIL offers a powerful and non-addictive
form of pain management. Through a natural process of en-
ergy transfer (biostimulation and photomechanical effect), it
could speed up the healing and regeneration process. HIL is
particularly effective in the treatment of sports related inju-
ries, e.g. muscle strain or joint distortion, and back pain
caused by e.g. herniated disc or disorders in the cervical re-
gion, which lead to neck pain [24].

4. BIOLOGICAL RESPONSE IN STEM CELLS AF-
TER LOW-LEVEL LASER IRRADIATION/PHOTO-
BIOMODULATION

Low-level laser irradiation can stimulate a number of bio-
logical processes, including cell growth, proliferation [25],
and differentiation [26]. The effects of low level laser irra-
diation on cell proliferation in vitro have been investigated
on different cell types including fibroblasts [27, 28], endo-
thelial cells [29], skeletal cells [30, 31], keratinocytes [32],
myoblasts [33], and other cell types [34-37]. Generally, it is
accepted that low-level laser irradiation (especially red and
near-infrared light) promotes proliferation mainly through
activating the mitochondrial respiratory chain, and the initia-
tion of cellular signaling [38, 39]. The laser energy absorbed
by intracellular chromophores triggers the dissociation of
NO from cytochrome c oxidase, resulting in a cascade of
responses, including an increase in cytochrome c oxidase
enzyme activity, electron transportation, oxidative respira-
tion, mitochondria-related RNA and protein synthesis, oxy-

Khorsandi et al.

gen consumption, membrane potential [5, 6, 36], and ATP
production, leading to increased reactive oxygen species
(ROS), and cytokines, and also expressions of growth factors
[40, 41]. ATP acts via multiple P2 nucleotide receptor sub-
types to increase the concentration of intracellular calcium
(Ca®" [42, 43]. Simultaneously, the ATP regulates protein
synthesis and DNA synthesis, which consequently improve
cellular oxygenation, nutrition, and regeneration (Fig. 2) [44-
46].

The biological response of cells to these changes results
in the activation of transcription factors, which can induce
many gene transcript products. The concentration of induced
ROS can switch the secondary biological response of live
cells. Low dose ROS can stimulate cellular proliferation by
switching various cell signaling pathways; however high
concentration of ROS reduces the cell viability and inhibits
proliferation [47]. Low-level laser irradiation can affect the
ligand-binding mitochondrial macromolecules such as redox
enzymes in the respiratory chain [48, 49]; for example, NOx
dissociation from binding sites on the redox enzyme,
reactivation of these enzymes in the respiratory chain, and
increase of the ATP production in cells [50].

The extracellular signal-regulated kinase (ERK) cascade
plays an important role in the cellular proliferation of many
cells [51]. ATP-induced activation of ERK1/ ERK?2 is de-
pendent on the dual-specificity kinase mitogen-activated
protein kinase/ERK kinase (i.e., MEK), but independent
from the phosphatidylinositol 3-kinase (PI3K) activity [52].
PI3K is a lipid kinase, which promotes diverse biological
functions, including cellular proliferation, survival, and mo-
tility. The PI3K pathway is an important driver of cell prolif-
eration and cell survival [53], whereas the ERK pathway is a
major regulator of cell proliferation [54]. It has been reported
that LLLT specifically activates MAPK (mitogen-activated
protein kinase)/ERK pathway, and consequently induces cell
proliferation [55]. In another study, it was shown that LLLT
specifically activates RTK/PKCs signaling pathway to pro-
mote cell proliferation [56], and results in significant activa-
tion of ROS/Src pathway [57]. Furthermore, Akt can be acti-
vated either by Src or by PKCs protein kinase [58, 59].
Therefore, it is probable that Akt is involved in LLLT-
induced cell proliferation [60]. Since the LLLT treatment can
increase the level of intracellular ROS generation [61], the
increased intracellular oxidants can mediate the activation of
Akt [62]. Many Reports suggested the existence of the
ROS/Akt signaling pathway during LLLT induced prolifera-
tion [6] (Fig. 3).

Different lasers were used in different studies, which
have different parameters, including wavelength, power den-
sity, fluency, and application time. LLLT can prevent cell
apoptosis and enhance cell proliferation, migration, and ad-
hesion at a low dose compared to high does [63]. The effect
of LLLT on cell proliferation has been confirmed in several
types of cells [64].

Boulton and Marshall revealed that laser irradiated cul-
tures exhibit a significant increase in the number of human
skin fibroblasts, which grow on the plastic substrates com-
pared to their respective non-irradiated controls after 24 and
48 h [65]. The effects of LLLT on cell cultures have been
studied generally by Karu er al. [66]. It was also described
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Fig. (2). Cellular response in mesenchymal stem cells after low-level laser irradiation/ photobiomodulation.

that the stimulation of cellular proliferation depends on the
dose of laser irradiation, as lower doses increase the cell pro-
liferation rate and other cellular functions, while higher
doses of LLLT have negative and inhibitory effects [63].

Nowadays, investigation of the use of low-level lasers in
health, medicine and biology is one of the interesting fields
in biomedical research. These studies and findings will lead
to greater credit of low-level laser therapy in the mainstream
medicine and may also result in using LLLT for more com-
plicated diseases such as stroke [5], heart attack and degen-
erative brain diseases [67]. The effect of low-level laser on
changing the cell membrane potential and reducing pain is
one of the well-known effects of LLLT [68]. The ability to
control the cell membrane potential can help researchers
control drug delivery in the cells for therapeutic purposes
[69, 70].

PubMed, Scopus and Google scholar electronic databases
were searched for finding the articles about the effect of low-
level laser irradiation on the biological response of stem
cells. The used keywords were "low-level laser therapy" OR
"low power laser therapy" OR "low-intensity laser therapy"
OR "soft laser” OR '"photobiomodulation therapy" OR
"photo biostimulation therapy" OR "LED and stem cells".
The retrieved articles were limited to the English language
and were taken from the period of 2009 to April 2019. Data
extraction involved cell origin, laser parameters, and final
results. The selected articles were characterized as in vitro or
in vivo experimental studies and clinical trials, which evalu-
ated the effects of irradiation from LLLs and LEDs on
MSCs. The initial selection included a review of articles;
those that did not reflect the purpose, were excluded. Also,
we included all articles that evaluated all lasers types except
other light sources such as Xenon flash lamps. Those articles
which assessed the phototherapeutic effect on other stem cell
types, such as dental follicle stem cells, were excluded. This
article only focused on the photo stimulatory effects such as
proliferation and differentiation of stem cells. The abstracts
of other studies were analyzed. At the end of the selection

process, after reading the full texts, articles that met the in-
clusion criteria were reviewed. Finally, 46 articles were used
to compile this review (Table 1).

Irradiation of cells at certain wavelengths can activate the
specific biochemical reactions as well as altering the whole
cellular metabolism [49]. Karu stated that the laser effect
depends on the radiation, wavelength, dose, and intensity as
well as on other cell culture conditions [66], although many
types of LLLT have been used to deliver irradiation to dif-
ferent cell lines, in order to achieve the maximum prolifera-
tion rate (Table 1). Also, two types of LLLT were mainly
used for in vitro studies. Helium-neon (He-Ne) lasers were
used at a wavelength of 632 nm that transmit red visible
light, while the second type used gallium-aluminum arsenide
(Ga-Al-As) with a wavelength of 830 nm, which is in the
near-infrared region of the spectrum. Most in vitro studies
have been carried out with the He-Ne laser [71].

In most studies, the visible spectrum (600-700nm) was
effective for a cellular response (proliferation or differentia-
tion) of stem cells [19, 72-75]. De Villiers et al., found an
increase in cellular viability and proliferation on human
adipose-derived MSCs (hADSCs) using a diode laser [76]
(Table 1). Giannelli M et al., reported that the proliferation
of mouse MSC increased after irradiation with the 635 nm
diode laser [77]. Mvula et al., suggested that the proliferation
of ADSCs significantly increased after exposure to a diode
laser at 636 nm wavelength (5 J/em?) [78].

The reviewed studies used laser energy densities between
0.2-9 J/em®. The power density used for visible light was
30-170mW/cm2, and it was also 50-700mW/cm® for infrared
light.

Amid et al., in 2014 [79] and a systematic review by
Ginani et al., [80] supported the stimulatory effect of Red
and IR lasers confirming both proliferation and osteogenic
differentiation of stem cells. Bloise ef al., reported that 659
nm diode laser with a power output 10mW and energy den-
sity of 1, 3 J/em® could induce the proliferation and differen-
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Fig. (3). The signaling pathways involved in the photobiomodulation treated Mesenchymal stem cells.

tiation in a human osteoblast-like cell line (Saos-2 cell) [81].
Ginani et al., presented the proliferation of murine bone mar-
row cells 72 h after irradiation with 635 nm laser using an
energy density of 0.3 J/cm® and power 89 mW [77]. Fekrazad
et al., indicated that using 810 nm diode laser with Power: 30
mW fluence 8.5 J/em2 with 20 s irradiation per day for 3-
week resulted in better healing of artificial osteochondral
defects in comparison with BMSCs alone, with higher bone
formation than cartilage formation [19, 82] (Table 1). Jawad
et al., indicated that the 940 nm laser diode with 100 and 200
mW powers significantly promoted cell differentiation; how-
ever, 300 mW stimulated the osteoblast proliferation in hu-
man fetal osteoblast cell lines [83].

There are a few reports on the use of a combination of
different laser wavelengths for inducing proliferation or dif-
ferentiation on stem cells. A combination of different laser
wavelengths on MSCs proliferation and differentiation either
on chondrocytes or on osteoblasts in vitro has been utilized
by fekrazad et al. [84]. They found that the most effective
laser wavelength for inducing both proliferation and differ-
entiation of MSCs was of IR laser closely followed by red
(R) laser. Moreover, they reported that the green (G) laser
could suppress cellular proliferation and osteogenic differen-

tiation; however, it could promote chondrogenic differentia-
tion. A combination of IR-R suppressed the collagenous dif-
ferentiation, while IR alone can stimulate it. Although R-G
combination stimulated cartilage formation, G laser alone
had a better effect compared to combined therapy. Each R
and IR laser alone stimulated osteogenic differentiation,
however, IR-R combination suppressed it [84]. Generally,
using LLLT under the described experimental conditions for
a period of 3 weeks, could be significantly effective in im-
proving bone regeneration. However, applying MSCs alone
or in addition to LLLT may not make a significant difference
in bone formation over a short period of time in rabbits. This
study conclusively indicated no synergistic effect of MSC
and LLLT under earlier described conditions [84].

However, in a recent experimental study, Choi et al., re-
ported significantly higher amounts of bone formation just
after 2 weeks using adipose-derived mesenchymal stem cell-
seeded ADM on 4 mm calvarial defects in mice [85]. Choi
et al., reported a significant positive effect of using HeNe
laser in conjunction with MSCs on the bone generation of
mice [85].

Soleimani et al. [86], analyzed the action of LLLT on the
proliferation rate of human bone marrow stem cells cultured
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Table 1. Review of PBM and LLT effect on stem cells (2009-2019)-Energy density or Fluency (J/cm’®), Power density (mW/cm?,
Energy (J), Power mW.
References Wavelength Irradiation Cell Type Biological Response Results
(nm) Parameters
. 195,230, and b diai i th b
Pasterna - 318 mW/em?, 3, 10, Human bone mar- Increases in cell viabil- Irra 1?1t10f1 with the MLS M1 sys‘tem can be
Mnich et al. 808 and 905 d207: row mesenchymal . . . used in vitro to modulate MSCs in prepara-
an > ity and proliferation . . L
2019 [90] 5 stem cells tion for therapeutic applications
0.93-6.27 J/cm
Rafael Output power: . . Slgmﬁcagtly increased Future application of LLLI as a protective
30 mW; laser beam: Rat adipose tissue- apoptosis as well as . . L
etal 2019 660 2 . . . . approach against DOX-induced toxicity in
[91] 0.028 cm™; irradia- derived MSCs oxidative stress in the MSCs. particularly cell death
tion: 1.07 mW/cm® MSCs. P Y
Human Wharton's
Babaee et al. 625 Red LED jelly-derived mes- Differentiated the cells Photobiomodulation may be applied for
2019 [92] 1.9 Jem? enchymal (hWJM) into germ lineage gametogenic differentiation in-vitro
cells
Kyuchang Light-emitting diode Human umbilical I\EISB(IZ\/I elnhgpcesé tl%e angloieillic P otentFlal ;)ff
etal 2019 633 array, 1.65-7.12 cord blood-derived Cell proliferation S% ee:hmtg otlmpiovfe di etr-apel.l :; ¢ ;-
93] mW/em?, Fluence MSCs cacy for the treatment of radiation-induce
enteropathy
Dual model device In vztr(? LLLT appll.ed to AMSC:s boosts its
Han ef al itted florida 6 Growth fact I secretion of paracrine factors, thereby en-
) Oalr;e 92 655 and 635 lazr:rl oet:her Ozlraame hAMSCs rorv ; ¢ 1(\); Srégu & hancing AMSCs potential as a treatment for
[94] ters is not P labl oy by s KFs and HSFs via downregulation of Notch1
ers is not available and TGF-p1
Ferreira ef al. InGaAlP Humfin exfoliated Cell growth was signifi- PBMT increases the‘number of stem c‘ells
2019 195 660 5 deciduous teeth tlv hich with no interference in the undifferentiated
(93] 20 mW, 0.028 cm (SHEDs) cantly gher state of the irradiated cells
Human umbilical 635-nm laser increased 808 nm laser irradiation could help CSF to
Chen et al. 635 and 808 Energy densities cord mesenchymal cell proliferation, high induce neuronal differentiation of hUC-
2019 [96] from 0 to 10 J/em2 stem cells (hUC- positive expression of MSCs in early-stage and tend to change to
MSCs) GFAP in the 808 nm neuron rather than glial cells
Osteoblast responses to
red light were mediated
by Akt signaling activa-
tion, which seems to
positively modulate
. reactive oxygen species
. Diode lase‘rs and Human osteoblast levels. Violet-blue light- | PBM with 635 nm laser as a potential, effec-
Tani et al. 405, 635 and LED: continuous and mesenchymal iradiated cells behaved i tion f tine/i ine b
2018 [97] 208 wave with a 0.4 stromal cell irradiated cells behave ive option for promoting/improving bone
Jiem? energy density (hMSC) essentially as untreated regeneration
24 ones and NIR irradiated
ones displayed modifi-
cations of cytoskeleton
assembly, Runx-2 ex-
pression and mineraliza-
tion pattern.
Priglinger LED Human adl.p 08¢ Vascularization poten- Beneficial effects after LLLT on the vascu-
475,516 and s tissue-derived . . . L R . . .
etal 2018 635 stromal vascular tial and proliferation larization potential and proliferation capacity
Energy info. NA :
[98] fraction cells capacity of SVF cells
Amaroli et Irraqlatlon aw, Bone marrow . L LLLI can modulate BMSCs differentiation in
72018 199 808 continuous-wave) stromal cells Cell differentiation hanci . .
al. [99] fluency (64 J/em?) (BMSCs) enhancing osteogenesis
Power: 50 mW, Adipose-derived .
Stancker et Downregulation of pro- . . .
energy: 42 J, energy stem/stromal cells . - Downregulation of pro-inflammatory cytoki-
al. 2018 808 g > . inflammatory cytokines
density: 71.2 J/em®, (ADSCs) (Fischer nes and MMPs
[100] . and MMPs
spot size: 0.028 344 rats)

Table (1) contd....
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Wavelength

Irradiation

References (nm) Parameters Cell Type Biological Response Results
No difference in viabil- R .
. . Under these irradiation parameters, equine
. ity was detected, a sig- . . .
Equine bone mar- . . . MSCs remained viable and expressed in-
Nd:YAG energy . nificant increase in .
Peat et al. . 2 row-derived mes- . X creased concentrations of IL-10 and VEGF.
1064 density 0of 9.77 J/cm™ expression of interleu- .. .
2018 [101] enchymal stem cell . IL-10 has an anti-inflammatory action by
power of 13.0 W kin (IL)-10 and vascular S . .
(MSC) . inhibiting the synthesis of proinflammatory
endothelial growth toki Cthe © intional level
factor (VEGF) cytokines at the transcriptional level.
Fekrazad Power: 30 mW Healing of artificial There was better healing by LLLT compared
etal 2016 810 Rabbit BMSC with BMSCs alone, with higher bone forma-
[19] Fluence 8.5 J/cm2 osteochondral defects tion rather than cartilage formation
Activate a Beneficial Use of LLLT as a therapeutic application in
Farfara et al. Not renoried Power: 400 mW Mtsklczloflmousf’ immune response in progrc.:ssive stages of AD and imPlying. its
2015 [102] otreporte Fluence: 1 Jom?2 Wldisea sZe ?Xrll)e)r s progressive disease role in mediating MSC therapy in brain
stages of AD mouse amyloidogenic diseases
Fekrazad LLLT significantly increased new bone
Power: 200 mW i ifici i i
etal 2016 210 Rabbit BMSC Healmg.of artificial formation r‘elzlmve to Cf)l’ltrOl group but ‘had
Fluence 4 J/cm?2 calvarial defects no synergistic effect in conjunction with
(82] . .
MSCs in bone formation.
de Oliveira GaAlAs, LLLT on human and rat MSCs might
ot al 2015 660 Power: 30 mW hMSCs Cell adhesion and pro- upregulate VEGF messenger RNA (mRNA)
[103] Fluence 0.75-9 And rMSCs liferation expression apd m(.)dula.te .celll adhesion and
Jem2 proliferation distinctively.
Pulsed radiation
Energy outputs: 1-5 Pulsed low-level laser with low-energy den-
Huertas et al. . . . L
2014 [104] 940 J MG-63 cell Proliferation sity range appears to exert a biostimulatory
Intensities: 0.5, 1, effect on bone tissue.
1.5 and 2 W/cm2
Barboza InGaAIP, Continu-
ous mode BMSCs and . . Cell proliferation increased in a dose-
tal.2014 ’
¢ 0[7 2] 660 Power: 30 mW AMSCs of mice Cell proliferation dependent manner
Fluence 0. 5-1 J/cm2
Migliario . Murine LLLT increased prollferan‘on sllgmﬁcantly. by
Continuous mode . . 5-15 J energy output. While higher energies
etal 2014 980 P ¢ preosteoblasts Proliferation (25-50 J) had an inhibitory effect on the
[105] ower outputs MC3TS3 cells ory e
osteoblast proliferation
Single transverse-

. mode Human osteoblast- . . . .
Bloise et al. . . Proliferation LLLT enhanced Saos2 cells proliferation and
659 Power output 10 like cell line (Saos- . . .

2013 [81] . differentiation maturation.
mW 2 cell line)
Fluence 1, 3 J/cm2
Continuous mode Enhanced the proliferation and survival of
Choi et al. Energy out puts: Adipose-derived Bone regeneration po- ASCs at 14 days ASC-seeded grajfts promote
2013 85 632.8 17.0 mW mesenchymal stem tential bone regeneration, and the application of
[83] Intensities: cell entia LLLT on ASC seeded ADM results in rapid
0, 1 and 3 J/cm2 bone formation.
Jawad et al. Continuous mode Human fetal os- Proliferation 1.00 and‘2(?0 mw powers promoted cell
2013 183 940 Power outputs teoblast cell [i differentiati differentiation significantly however 300
[83] 100, 200, 300 mW coblast cell line tHerenfiation mW stimulated osteoblast proliferation
Energy out puts: Human periodontal Cell proliferation and
Wu et al. 15-17 mW.cm—2, . X .. . . .
660 .. ligament cells differentiation, gene Potential for use in clinical applications
2013[106] Intensities: (hPDL) expression, cytotoxici
1,2 and 4 J/om?2 pression, &y v
Giannelli Single irradiation . . . . .
etal 2013 635 Power 89 mW Murine bone mar- Proliferation DI.Ode. fl‘asert;ncr::e;;e}(li CEH p‘roll(;f‘er?tlon
[77] Fluence 0.3 Jom? row significantly a after irradiation

Table (1) contd....
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Fluence 0.5 J/cm2

Wavelength Irradiati
References az:::)lg Pl:rzlnllitl:rll Cell Type Biological Response Results
1.Cell viability
Continuous mode 2. Expression of hy-
E t puts: poxia-inducible factor-
Pyo et al nelrggoozl&u ) Hypoxic cultured 1s (HIF-1s), bone Induces the expression of BMP-2, osteocal-
al. ’ . . .
2013 [107] Intensities: Human fetal morphogenic protein-2 cin, and TGF-B1 in 1 % hypoxic-cultured
12.2.4 and .3.6 osteoblast cells (BMP-2), osteocalcin, human osteoblasts
J/em2 type I collagen, trans-
forming growth factor-
B1 (TGF-B1), and Akt
Nd:YAG, pulsed
Leonida et al. mode, Power: 1.5- Proliferation significantly increased in scaf-
at 1064 225W BMSCs Cell Proliferation & . Y
2013 [108] Fluence: 0.326-3.81 folds treated with laser after 7 days.
J/em2
OFSC migration, activa- | Stem cells are sensitive to green LED irradia-
Ong et al Licht-emitting diode Human orbital fat tion of extracellular tion-induced directional cell migration
201§ [108A] 530 g reen LEgD stem cells (OFSCs) signal-regulated kinases | through activation of ERK signaling pathway
£ (ERK)/MAP kinase/p38 via a wavelength-dependent photo-
signaling pathway transduction
. It can be concluded that LLLI using infrared
P 130 mW H dontal
Soares et al. 660 Flu(::lvfé 0 SI:n a1 i ux;ﬂf:;?ﬂ (:::liis Dose dependent cell light and an energy density of 1.0 J/cm? has a
2013 [109] I /.cm.2 8 (hPDLSC) proliferation positive stimulatory effect on the prolifera-
tion of hPDLSC
Proliferation rates of At longer c?xposu‘res, tl?ere was a significant
Anwer ef al Nd:YAG, cells correlation with decrease in proliferation and autofluores-
20121 10]4 532 Power: 30 mW ADSCs auto fluorescence cence. A strong correlation was observed
Fluence: 5-45 J/cm2 . . between proliferation rates of cells and auto-
ntensity. . .
fluorescence intensity.
Diode laser, . L L . .
Wuetal. 660 Power: 38 mW Mouse BMSCs Dose-dependent differ- Osteogenic differentiation was increased in a
2012 [111] Fluence'. 1-4 Tem2 entiation dose-dependent manner.
The irradiation with low-level InGaAlP red
Enerev fluences No statistically signifi- low-level laser (660 nm) in four different
Pereira et al. 660 (0.05 (;g }3/ 0.7 and 42 Human dental pulp cant differences were energy fluences potentiated neither prolifera-
2012 [112] o J)crr; 2 stem cells (hDPSC) observed between the tion nor odonto-osteogenic differentiation of
proliferation rates hDPSC isolated from patients with normal
and inflamed pulps.
He-Ne LLLT is an effective bio- stimulator of ASCs
Kim et al. . . Wound healing, in wound healing that enhances the survival
632.8 Power: 17 mW A >
2012 [113] Canine ASCs survival of ASCs of ASCs and stimulates the secretion of
Fluence: 0-3 J/em2 growth factors in the wound bed.
1,3, and 5 days’
a’fte’rai?lcuba?i}(;fl Cell proliferation was enhanced by doses of
Soleimani et 210 P 50 mW Human bone mar- Cell Proliferation 2,3,and 4 J/cm2 but 6 J/cm2 gave no differ-
al2012 [86] ower oo m row i iati ence. ALP activity increased significantly b
Fluence 2 and Differentiation y g y by
4 Jem?2 laser irradiation.
Wu et al Single irradiation Murine bone mar Gene expression and Bone marrow proliferation was increased
al. -
2012 [114] 635 Power 60 mW row Cell PrIZ)liferation significantly by laser at 2, 4, and 6 days later
Fluence 0.5 J/cm2 of irradiation
Single irradiation . Laser irradiation promotes proliferation
W tal. M b -
) Oéilnzg[fi 1‘;] 635 Power 60 mW urmeroi)vne mar Proliferation processes 2 and 4 days’ after exposure com-

pares to control group.
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References Wavelength Irradiation Cell Type Biological Response Results
(nm) Parameters
nonconherent red light can promote prolifera-
Cellular proliferation tion but cannot induce osteogenic differentia-
P tal. Red light i i i i ile it en-
eng ef a ed lig Fluence: 0-4 J/em(2) MSCs a%k'fllme ph0§phata‘se tion of MSCs in n.orrrllal medlla,lwhlle iten
2012 [116] LED activity and mineralized hances osteogenic differentiation and de-
nodule formation creases proliferation of MSCs in media with
osteogenic supplements.
Bone marrow of L . .
GaAlAs, exposed tibia and Application of LLLT decreasefi 1pfarct size
Tuby et al. R . . as compared with control. Irradiation to bone
804 Power: 400 mW heart of rats’ after Decreased infarct size .
2011 [117] . marrow was more effective than to heart to
Fluence:1 J/cm2 myocardial infarc- .
. reduce infarct.
tion
s Diode laser, T LLLI does not induce differentiation of
Dle ;/()liliersgt 636 Power: 78 mW hADSCs Cellularl.\gab?lty and isolated hADSCs, and increases cellular
at [76] Fluence: 5 J/cm2 protiieration viability and proliferation.
Pulsed radiation Mouse-derived
Aleksic ef al Energy/pulse output osteoblastic cell Er:YAG laser may be able to promote bone
’ 2940 30-350 mJ li Cell proliferation healing following periodontal and peri im-
2010 [118] me
Fluence 0.7-17.2 plant therapy.
J/em2 MC3T3-El
Single exposure . s .
Renno et al. Osteoblastic . . Laser irradiation reduced osteoblast prolif-
P t30
2010 [119] 830 owerrg;t[p " (MC3T3) cell line Cell proliferation eration compared to control group.
Mvula et al Diode laser, EGF on adult Extracellular calcifica- Irradiation was able to promote
’ 636 Power: 110 mW .
2010 [78] Fluence: 5 J/em?2 ADSCS tion of MSCs extracellular calcification of MSCs.
LED array Growth of MSCs was LLLI led only to a short-term increase in
LiWT et al. Rat bone marrow h d MSCs proliferation, A maximal increase in
630 Power: 5-15 mW enhance . . . .
2010 [120] Fluence: 2-4 J/em? MSCs ) ) cell proliferation was observed with multiple
: MSCs proliferation exposures of LLLI
Kushibiki Power: NA Inhibition in cell growth Blo-stlmulatlon at l.ow?r.dlose.s at all time
and Awazu. 405 Fl - 9-36 J/om? MSCs t hioh d points evaluated and inhibition in cell growth
2009 [121] uence: o= em athigh doscs after 48 h at higher doses.

Horvat- Power 60 mW Murine b Lower doses had bio-stimulatory effect in
Karajz et al 660 Fluence 1.9 and urine bone mar- Cell proliferation adverse cell proliferation was inhibited after
2009 [122] 3.8 Jem2 row 48 h at higher doses

Bouvet-

Gerbettaz 308 Continuous mode Murine bone mar- Cell proliferation and Infrared laser did not alter proliferation and
etal 2009 Fluence 4 J/cm2 row cell differentiation differentiation compared to the control group
[25]
Kim et al LED radiation ener- Mouse mesenchy- (lzlllf;;metph-ospha;?\?; Osteogenic differentiation of mesenchymal
201(;3 8153‘ 647 gies 0 0.093 J, mal stem cells (D1 ex ress?znl:g?o:;eocal stem cells (MSCs) in ODM is enhanced by
[123] 0.279 Jand 0.836J cells) P . LED light exposure
cin and etc.
Cvioki , In the mouse model of photoaged skin,

. . Human adipose- ~ytoxine seeretion ADSCs treated with GaAlAs laser irradiation

Liao et al. GaAlAs laser irra- . adipogenic differentia- . .
650-nm .. derived stem cells . . had markedly decreased the epidermal thick-
2018 [87] diation tion thicknesses of the . .
(ADSCs) . . . ness and increased the dermal thickness of
epidermis and dermis .
photoaged mouse skin
W ‘al Human adipose- Critical sized calvarial combined treatment with ADSCs and LPLI
ang ef ax 660 nm GaAlAs red laser derived stem cells rihical sizec calvaria could further enhance the bone healing proc-
2018 [88] defect in a rat model
(hADSCs) ess
Expression of Dcn, 1115,
D. Lucke 208 Power 40 mW Adipose-derived Timp2, Tgfbl, Lox, Transplapted ASCs migrated to the tran-
etal. 2018 . mesenchymal stem Mmp2, Mmp8 and sected region, and all treatments altered the
nm/infrared Fluence 50 J/cm2 L . .
[89] cells Mmp9 and organization remodelling genes expression.

of collagen fibres
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in medium supplemented with osteogenic and neurogenic
inducing factors. The authors noticed a significant increase
in the proliferation of irradiated cells, compared to the non-
irradiated group, even with the cells cultured on differentiat-
ing media [86].

Along with in vitro studies, there are some in vivo studies
on low-level laser irradiation effect on stem cells in an ani-
mal model. Liao ef al., have shown that in the mouse model
of photoaged skin, ADSCs treated with GaAlAs laser irradia-
tion markedly decreased epidermal thickness and increased
dermal thickness of photoaged mouse skin [87]. Wang et al.,
noticed that ADSC and Low power laser irradiation (LPLI)
treatments improved fracture repair in critical-sized calvarial
defects in rats. Importantly, the combined treatment of
ADSCs and LPLI further enhances the bone healing process
[88]. In a study by D. Lucke et al., it was noted that trans-
planted ASCs migrated to the transected region, and all
treatments altered the remodelling genes expression. The
LLL was the most effective in the collagen reorganization,
followed by its combination with ASCs [89].

Since laser parameters such as wavelength and dose play
such a crucial role in the effects observed in irradiated stem
cells, it is essential to determine the best parameters for use
during irradiation of stem cells. Due to the variation in the
experimental design, comparing the experimental results of
laser therapy in cell culture is difficult.

CONCLUSION

Regenerative medicine and stem cell therapy have the po-
tential to provide diseases-free, functional tissues and organs,
and improving the quality of life for patients. Stem cells fre-
quently have a low yield and a reduced proliferative rate in
vitro, which decrease their efficacy in clinical regenerative
therapy. Therefore, combined innovative new therapies such
as stem cell therapies and LLLT/photobiomodulation are
necessary for regenerative medicine. The results of this re-
view suggest that LLLT -based regenerative medicine could
be a useful tool for future advances in tissue engineering and
cell therapy.
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