

Technical Bulletin

TB65-7th Edition

This Digital Studio Cable Guide will help you understand the important aspects of digital cables and the correct part numbers to use for a given format.

Digital Studio Cable Guide

Radio and television broadcasters are going digital. Digital formats have worked their way into recording studios, video post-production, film production and many associated applications, and the reason is clear — digital provides superior audio and video performance.

Bit stream coding is a vast simplification of complex audio and video signals. But because the signal is data, receiving equipment can decipher the bit stream, ignore any noise and correct for any attenuation. Audio and video signals are so sophisticated and complex however — reducing them to data code requires much higher frequencies than if they were left in analog sine waves. Digital audio and video cables need to handle ever-higher digital frequencies. Also because this is audio and video, it must be processed in real-time, in sequence, and live. We only give alphanumeric "data" the luxury of re-transmits, processing delay, and blank screen tolerance. Audio and video signals must remain on-air, without any pause to "compile." These are the challenges broadcast quality audio and video cables have to meet.

Digital is very stable, which reduces equipment adjustments significantly. Copies or reproductions retain the quality of the original. Signal degradation is virtually eliminated, and noise

immunity is greatly improved. Whether it's a radio, TV or post-production application, all of these advantages result in improved picture and sound quality as well as interactivity, high-speed data and Internet access, payper-view services, simultaneous data/Internet access and personalized electronic news.

Although digital promises to revolutionize the audio and video industry as we know it, it also poses a challenge when it comes to designing, choosing, and installing a new system. It has been estimated that there may be as many as 18 different DTV formats to choose from, with new ones being proposed all the time, all of which vary in the level of compression and transmission frequency. Various options also face the radio industry.

With all of these equipment options available, it becomes very important in the design phase to determine the correct cable to connect each of these pieces of equipment. The wrong choice in cable can be as costly as the wrong choice in equipment.

This Digital Studio Cable Guide will help you understand the important aspects of digital cables and the correct part numbers to use for a given format.

BELDEN

Although digital promises to revolutionize the audio and video industry as we know it, it also poses a great challenge when it comes to designing, choosing, and installing a new system.

Digital Audio

The specification for digital audio was developed jointly by the Audio Engineering Society and European Broadcast Union (AES/EBU). The two key electrical parameters in this specification that pertain to cable are the data rate, which depends on the sampling rate (see table below) and an impedance of 110 ohms ±20% for twisted pair constructions and 75 ohms for coax designs.

Sampling Rate	Bandwidth
48.0 KHz	6.144 MHz
96.0 KHz	12.228 MHz
192.0 KHz	24.576 MHz

Note: Attenuation of digital signals and distance data are shown on page 11.

Twisted Pair Parameters

The AES/EBU specification, with its broad impedance tolerance, allows for cables with impedances from 88 ohms to 132 ohms to be used, with 110 ohms being ideal. While twisted-pairs with foil shields are commonly used, the option of UTP, unshielded twisted pairs, such as Category 5e, Category 6 or Category 6A is also common. Foil shields (such as Belden 1800B) are appropriate for permanent installations. Braid shields (such as Belden 1800F) are better for flexing applications, such as patch cables. Specialized UTP cables, such as Belden 1353A single-pair Category 5e patch cable, are also available for AES/EBU applications.

The cables are terminated with either XLR connectors or are punched down or soldered in patch panels. Most digital audio cables utilize foam polyethylene to minimize the cable's size. Standard foam polyethylenes are susceptible to crushing which can change impedance. Belden cables utilize a special foam high-density polyethylene that provides exceptional crush resistance when compared to standard foam insulations.

The advent of digital microphones requires AES/EBU cable designs with added flexibility, such as Belden 1800F, a 110 ohm design featuring our ultra-flexible "French Braid" construction.

Can analog cables be used for digital? Yes, but only for distances of roughly 50 ft. or so. The actual length is determined by the error correction and jitter tolerance of the receiving device. The impedance of most analog cables ranges from 40 ohms to 70 ohms. This large mismatch from the nominal 110 ohms results in signal reflection and jitter causing bit errors at the receiver. Also, the high capacitance of analog cables greatly decreases the rise time of digital square waves.

Can digital cables (paired) be used for analog? Absolutely! The capacitance of digital cables is extremely low, making them a superior analog cable.

Digital Audio Over Coax

The transmission of digital audio over 75 ohm coax requires the use of baluns unless the device contains unbalanced coax AES inputs or outputs or the audio signal is embedded on a digital video signal. The baluns convert the unbalanced 75 ohm coax signal to a 110 ohm balanced transmission.

Much greater transmission distances are obtainable over coax as compared to twisted pair. The same coax used for digital video is ideal for digital audio. The coax used should have a pure copper center conductor (no copper covered steel or aluminum) and have good braid coverage (90% or more). Using one coax for both audio and video gives the added advantage of using one type of strip and crimp tool and one type of connector.

Embedding the audio is popular in TV applications. Embedded signals are often used in "pass through" installations such as cable head-ends. However, if audio manipulation is desired, such as spot insertion or replacement, then audio must be "de-embedded" or de-multiplexed from the video stream. This is a complex and expensive procedure. For maximum versatility, separate audio and video runs are suggested.

Digital and HD Radio

When radio broadcast is converted to digital the cable selection will be equally critical and arquably more so. The basic specification parameters for digital audio cable are entirely different than for analog audio. The key attribute for the cable is no longer lower capacitance as in analog audio. The Digital Audio signal is impedance specific and it is the impedance of the cable that is now critical. Fortunately, by nature of their design, Digital Audio cables have built-in low capacitance which makes them excellent analog cables. (The converse is not true: almost no excellent - or even good - analog audio cables are suitable for digital, because they were not designed with digital audio's impedance in mind.) The point: whether you're converting to digital now or later, whether you're converting wholly or partially, whether you'll be broadcasting 100% digitally or simulcasting analog and digital — Digital Audio cabling is essential to efficient design and value engineering. Even if your immediate needs are strictly analog, installing AES/EBU digital audio cable, like 1800B, now will give you the best performing analog audio service, and will spare you cable replacement when the day arrives that you upgrade to digital. This is the key to "future proofing."

Where AES/EBU balanced format is used, 110 ohm shielded balanced line cables are the standard. IP technology may be employed to integrate station data networking resources and requirements with programming and advertising content. Where IP technology is deployed, high quality UTP (Category 5e, Category 6 UTP, or MediaTwist®) can be used. Television stations may choose to use the AES3-id format, employ baluns, and carry digital audio over a 75 ohm coax infrastructure.

Radio Broadcasts will benefit tremendously from Digital Conversion and will be driven by the benefits it offers — even without government mandate: AM clarity equal to current FM; FM clarity rivaling current CDs; new

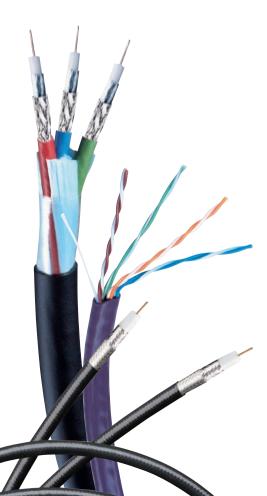
embedded text offering news, weather, traffic, and financial market information, interactivity, customization, and audio-ondemand. However your station deploys, Belden has the cable for AES/EBU, IP or AES3-id digital and HD Radio upgrades.

Digital Video (SDI)

The Society of Motion Picture and Television Engineers (SMPTE) has developed different standards for serial digital transmissions (SDI). There is also a European standards body known as ITU (formerly CCIR) that developed the European PAL specifications. Each of these specifications differs in bandwidth and transmission technology.

- SMPTE 259M Covers digital video transmissions of composite NTSC 143 Mb/s (Level A) and PAL 177 Mb/s (Level B). It also covers 525/625 component transmissions of 270 Mb/s (Level C) and 360 Mb/s (Level D).
- SMPTE 292M Covers the format for HD transmissions at 1.485 Gb/s.
- ITU-R BT.601 International standard covers component PAL transmissions of 177 Mb/s.
- SMPTE 424M Covers the newest format for HD transmissions at 3 Gb/s.

Coax Parameters


Newer coax constructions that have been designed specifically for digital transmissions offer performance advantages over the old analog designs. These new constructions employ several design parameters to provide the precision electrical characteristics required for high frequency transmissions over longer distances.

 Center Conductor — The center conductors are solid bare copper. Solid conductors provide better impedance stability and return loss (RL). RL expresses the amount of signal lost due to the signal reflecting back to the source. This reduces the signal reaching the receiver, thus increasing attenuation and decreasing effective transmission distance.

- Digital transmissions contain low frquency elements that travel down the center of the conductor and high frequency elements that travel on the outside of the conductor due to skin effect. For these reasons, uncoated pure copper conductors are used for optimum performance.
- Dielectric The dielectric material (insulation) consists of foam high-density polyethylene. The special formulation Belden uses is more crush-resistant than standard foam polyethylenes and is less prone to conductor migration. Both crushing and conductor migration can cause a change in the cables impedance which, in turn, will cause an increase in RL. While the nominal velocity of propagation of a solid dielectric is 66%, gas injection technology provides extremely consistent foaming and high velocities of propagation (82 to 84%). The velocity is kept very constant to minimize timing problems. Foam dielectrics reduce the size of the coax compared to older solid dielectric designs.
- Shield Precision analog cables utilize double braid shields which are not optimum for digital's high frequencies. Braid shields are ideal for frequencies under 10 MHz while foil shields work best above that frequency. Since digital transmissions contain both low and high frequencies, foil-braid designs are used.
- Testing Lastly, to ensure that the cables are electrically sound, every reel must be 100% sweep tested for RL to at least the third harmonic of the fundamental frequency. For HD cables at an uncompressed data rate of 1.485 Gb/s, this gives an occupied bandwidth of 750 MHz and a third harmonic frequency of 2.25 GHz (3 x 750). For 3G (1080p/60) formats, the data rate is 3 Gb/s with an occupied bandwidth of 1.5 GHz. The third harmonic of that is 4.5 GHz. Belden sweep tests manyof its HD cables to 4.5 GHz, with guaranteed minimum RL steps of 23 dB from 5 MHz to 1.6 GHz and 21 dB from 1.6 GHz to 4.5 GHz. More technical information on RL and other cable parameters can be found on Belden's website at www.belden.com.

BELDEN

With digital audio cables, much greater transmission distances are obtainable over coax versus twisted pair. The coax used should have a pure copper center conductor and good braid coverage.

Installable Performance®

When looking at guaranteed performance on a cable's data sheet, one naturally expects that the cable will deliver that same performance after it has been installed. This assumption doesn't always hold true, however, because the installation itself can dramatically alter the cable performance.

Typically, when cables are installed they are pulled and yanked on, bent around corners, stepped on, and may kink when coming off the reel. All of these factors can change the physical properties of the cable, which in turn may degrade the cable's electrical performance.

To help ensure that the cable's electrical performance is not compromised through improper installation techniques, three key cable attributes must be held to a high level: conductor adhesion, crush resistance and Return Loss.

Conductor Adhesion

Conductor adhesion is most important to connectorization and connector reliability. Improper levels of conductor adhesion can make the connectorization process harder and can cause connector failures both during and after installation. If adhesion levels are too low, the conductor can move within the dielectric and actually migrate and appear to grow or lengthen in the cable. A cable with low conductor adhesion may appear to be fine prior to installation. However, the rigors of installation can break the conductor adhesion due to all of the pulling and bending that occurs. Once the bond between the conductor and insulation is broken, the conductor migration can, in some cases, result in the center pin of the BNC connector being pushed out of the casing. To prevent this from occurring, Belden uses a skin/foam insulation process that ensures a high degree of conductor adhesion. In addition, all Belden cables are tested for conductor adhesion to further ensure performance.

Crush Resistance

As stated earlier, most of the cables used for SDI are foam dielectrics. Foam dielectrics are, by nature, softer than their solid counter parts. If the cable is improperly handled or installed, the dielectric can be crushed and deformed thereby changing the impedance and causing RL. The special proprietary formulation Belden uses is more crushresistant than standard foam polyethylene making it far less prone to deformation.

Return Loss Headroom

In order to ensure the SMPTE minimum level of 15 dB RL is met, the cables used must be several dB better to ensure the minimum level is met after the rigors of installation. Other components in the transmission chain can also degrade RL such as a bad termination or improper patch bay connections. Belden's guaranteed minimum level of 21 dB RL gives the user 6 dB of RL headroom to account for such potential inconsistencies.

Careful attention to all of the above attributes ensures that the cable the customer receives from Belden will meet performance specifications after installation. After all, that is what Installable Performance is all about.

Can analog coax cables be used for digital?

Standard video cables may have stranded center conductors or copper covered steel. They also may not have adequate shielding as mentioned above. Standard video cables are usually not tested for RL. Beware of plain old coax!

Can digital coax cables be used for analog?

Yes, but only if your plant has analog cable equalization (EQ) designed to work within the loss characteristics of the particular coax. If the transmission distance is short, equalization may not be a problem. Many equipment manufacturers are now making equalization cards designed specifically for the new digital cables when running analog.

Can I mix foam and solid polyethylene designs together in the same run?

If you run analog in short un-equalized runs, you can mix cables together. However, you will have two connectors, with different dimensions, two different stripping tools, and two different crimping tools. For longer EQ'd runs, combining two cables would make it difficult or impossible to equalize. Belden suggests you standardize on one cable for as long as you can. Foam core cables have a delay of 1.24 ns/ft compared to 1.54 ns/ft. for solid polyethylene. The loss characteristics of the cables will also be different. Both parameters must be taken into consideration if mixing cable types. As a rule of thumb, it's best to stay with one design throughout.

Video Connectors

Most connectors used for analog video are 50 ohm BNCs. In analog video, where the guarter wavelength of the signal is approximately 60 feet, the impedance mismatch of a 1/2 inch BNC connector, or even a dozen in a row, is minimal. However, the guarter wavelength of a digital signal can be as short as one inch at HD frequencies. and even shorter at 1080p/60. Most video signals go through many connectors in a typical studio. For this reason, it is recommended to use not only 75 ohm connectors, but also connectors demonstrated to maintain their impedance up to at least 2.25 GHz for HD. For 1080p/60, every component should be tested to 4.5 GHz. That's why it's a good idea to ask your cable and connector supplier if all the components selected - cables, connectors, etc. - are tested to 4.5 GHz.

Cable Installation

Care must be taken when installing digital, and especially high definition, coax. Improper handling, cable pulling and installation techniques can deform the cables which can in turn cause a RL problem. The following practices should be utilized when installing any digital cable.

Installation Basics

- Do not step on the cables.
- Do not lay equipment on the cables.
- Do not kink the cables.
- Cable pulls should be done in a slow steady fashion — no jerking. Do not exceed the cables maximum pulling tension (call the manufacturer for this information).
- Do not exceed the minimum bend radius of the cable: 10 times the diameter of the cable.
- Do not cinch cable ties too tightly. If you cannot move any cable inside a tied bundle, the cable tie is too tight.
- Do not put cable ties or J hooks at identical distances apart. This can lead to deformation at a given wavelength, which can cause RL. Place cable ties at random distances.
- Cables should be supported by cable trays, J-hooks, etc. to take the gravitational forces off of the cable. Cable sag should be less than 8 inches.
- Conduit runs in excess of 90' and/or with more than two 90° equivalent turns should include a pull box. Each 90° turn is equivalent to the friction of a 30' straight conduit run.
- If cable is pulled into conduit, an anti-friction lubricant should be used that is compatible with the cable jacketing material.
- Maintain the original physical shape of the cable.

Testing Digital Video

Belden suggests measuring and documenting the RL on every link to ensure that the SMPTE minimum suggested level of 15 dB is met. RL is the measurement of reflected signal caused by impedance discontinuities in the channel. These discontinuities are caused by connectors, cable, transition devices, patch panels and improper cable installation or handling. Any reflected energy reduces the power of the transmitted signal. Measuring RL will give a good expectation of just how well each link will do with SDI or HD video.

Digital Camera Cables

In 1998 the Society of Motion Picture and Television Engineers (SMPTE) developed the industry standard SMPTE 311 for High-Definition Television Camera cables to assure clear, reliable transmission of audio, video and camera control cables.

Belden's new composite cable incorporates two tight-buffer, single-mode 10µm optical fibers for video, four 20 AWG or two 16 AWG auxilliary conductors (depending on the design) and two 24 AWG signal conductors. The fibers, color-coded blue and yellow, permit long-haul transmission of critical audio and video signals with extraordinary reliability and clarity. The new standard provides a cable smaller in diameter and lighter in weight than traditional camera cables resulting in easier handling during installation or in field applications.

Belden's SMPTE 311 cables are 7804R and 7804C. 7804R is made with tight buffer fiber designs and (4) 20 AWG auxiliary (power) conductors per traditional design parameters. 7804C has been designed with breakout fibers to enhance ruggedness and with (2) 16 AWG auxiliary (power) conductors to simplify termination and reduce installation time. In addition, a central stainless steel strength member is used for additional durability during installation. The overall jacket is black Belflex® providing exceptional flexibility.

The Future

Unshielded Twisted Pairs (UTP)

The digitization of audio and video signals has given rise to a convergence with data wiring technology, which utilizes unshielded twisted pairs.

It is a misconception to equate digital signals to digital data signals though, simply because "they are both digital." Ethernet protocols allow for the use of packets which may be scrambled, transmitted, certain packets re-transmitted, unscrambled and recompiled before the information is presented. All that

BELDEN

The digitization of audio and video signals has given rise to a convergence with data wiring technology, which utilizes unshielded twisted pairs. Depending on bandwidth or distance, fiber optic cables may be used.

processing and reprocessing introduces delay which we tolerate for this media. Audio and video bit streams are required to arrive at "real time" with minimal time delay or "latency." And we require its playback to occur live and in real time. Just as a picture is worth a thousand words and can be taken in the blink of an eye — audio and video signals are much more than "data" — even when they are digital.

While almost any UTP cable can handle low-bandwidth or low data-rate applications (such as a telephone), few cables can handle signals like 270 Mb/s digital video for appreciable distances. Like coax, it's a question of what bandwidth (frequency) or data rate and how far. Distance is the key.

The consistency of a UTP cable determines the transmission distance. Physical characteristics of concentricity, conductor-to-conductor and pair-to-pair spacing relationships, and how well they are maintained along the length of the cable determine how far a signal at a given frequency can be carried without excessive attenuation. The quality of the cable determines the quality of the signal at a distance.

Fiber Optic Cables

At some point, either in bandwidth or distance, copper cables may not be able to perform the task at hand. In these cases, fiber optic cables are an option. Fiber comes as either single-mode or multimode core constructions. Multimode has a 50 micron or 62.5 micron fiber core. 62.5 micron fiber has a modal bandwidth of 160 MHz at 850 nm and 500 MHz at 1300 nm. Single-mode has an 8.3 micron core with a theoretical exit bandwidth into the gigahertz, essentially unlimited. Technologies are now extending even these bandwidths. Multimode and single-mode connectors are easy to install and can be field installed in minutes. Belden offers a comprehensive line of fiber optic cables and rapid field connectors.

Environmental Compliance

The use of materials that are environmentally friendly is of growing concern to Belden, its broadcast customers and to the global community. As a result, 100% of all Belden Digital Audio and Video Cables, and virtually all of the remaining Belden broadcast cables, now meet the requirements of both the Restriction on Hazardous Substances (RoHS) Directive and California Proposition 65. Consult the Belden Master Catalog for more information.

Digital Microphone Cable

Single-Pair Cables

Description	Part	UL NEC/ C(UL) CEC	No.	Color		dard gths		dard Veight	Nom.	DCR		ninal D	MOIII.	Nom. Vel.	No	m. Cap	oacitan	1Ce
Description	No.	C(UL) CEC Type	of Pairs	Codo	Ft.	m	Lbs.	kg	Cond.	Shield	Inch	mm	lmp. (Ω)	of Prop.	pF/ Ft.	pF/ m	pF/ Ft.	

26 AWG Stranded (30x40) Bare Copper • Conductors Cabled with Fillers • TC "French Braid" Shield (95% Coverage) • 26 AWG Stranded TC Drain Wire

Datalene® Insulation	Datalene® Insulation • Black PVC Jacket																	
Digital Mic Cable High-Flex 60°C	2221	NEC: CMR CEC: CMG FT4	1	Black, Red	1000	304.8	16.5	7.48	36.0Ω/M' 118.0Ω/km	6.6Ω/M' 21.7Ω/km	0.170	4.32	110	78%	13	43	26	85
French Braid																		

24 AWG Stranded (42x40) HC Bare Copper • Conductors Cabled with Fillers • TC "French Braid" Shield (95% Coverage) • BC Drain Wire Datalene Insulation • Matte PVC Jacket (Red, Yellow, Green, Blue, Gray or Black) Digital Mic Cable 1800F 5.0Ω/M' NEC: Black, 500▲ 152.4 13.5 6.1 23.7Ω/M' .211 5.36 110 76% 13 High-Flex CL2R Red U-1000 U-304.8 26.0 11.8 $77.7\Omega/km$ $16.4\Omega/\text{km}$ 1000**▲** 304.8 26.0 11.8 French Braid

^{▲500} ft. and 1000 ft. put-ups available in Black only.

BC = Bare Copper • DCR = DC Resistance • HC = High-conductivity • TC = Tinned Copper

 $^{{}^{\}star}\text{Capacitance between conductors.} \, {}^{\star\prime}\text{Capacitance between one conductor and other conductors connected to shield.}$

AES/EBU Digital Audio Cable

Single- and Double-Pair Cables

	Part	UL NEC/	No.	Color	Stan Len	dard gths		dard /eight	Nom.	DCR		ninal D	Nom.	Nom. Vel.	No	m. Cap	acitan	ice
Description	No.	C(UL) CEC Type	of Pairs	Code	Ft.	m	Lbs.	kg	Cond.	Shield	Inch	mm	lmp. (Ω)		pF/ Ft.	pF/ m	pF/ Ft.	pF/ m

26 AWG Stranded (7x34) .018" Tinned Copper • Twisted Pair • Beldfoil® Shield • 26 AWG Stranded TC Drain Wire

Datalene® Insulation • Chrome or Violet PVC Jacket 9180 NEC: 304.8 11.0 37.3Ω/M' 23.1Ω/M' 2-Conductor Digital Black 5.0 144 3 66 110 76% 13 43 Video Time Code Cable CMR White 122.3Ω/km $75.8\Omega/\text{km}$ 80°C CEC: CMG FT4 For cross-connect use with 7891A (et al.) Digital Audio Snake Cables, see page 9. Shorting Fold

24 AWG Stranded (7x32) Tinned Copper • Twisted Pairs • Overall 100% Beldfoil Shield • 24 AWG Drain Wire

	· .																
Datalene Insulation	Datalene Insulation • Slate Gray or Violet PVC Jacket																
60°C	1800B	NEC: CMG	1	Black, Red		U-304.8 18.0	5.5 8.2	$23.7\Omega/\mathrm{M}^{\prime}$ $77.7\Omega/\mathrm{km}$	$18.9\Omega/\mathrm{M}^{\prime}$ $62.0\Omega/\mathrm{km}$.177	4.57	110	76%	13	43	26	85
A Care		CEC: CMG FT4			1000 5000 4	304.8 18.0 1524.0 88.8	8.2 40.4						use with Cables)	
	• 500 ft. put-up available in Gray only. 5000 ft. put-up available in Violet only. For Plenum version of 1800B, see 1801B. The jacket and shield are bonded so both can be removed with automatic stripping equipment.																

24 AWG Stranded (7x32) Tinned Copper • Twisted Pairs • Overall 100% Beldfoil Shield • 24 AWG Drain Wire

· ·																	
Plenum • Foam FEP	Teflon	® Insu	lation (Natu	ral Whi	ite or Vi	olet Fi	amarrest®	Jacket								
75°C, Non-conduit	1801B	NEC:	1	Black,	500 [†]	152.4 9.	0 4.1	23.7Ω/M'	18.9Ω/M'	.165	4.19	110	78%	13	43	26	85
		CMP		Red		U-304.8 14.		$77.7\Omega/\text{km}$	$62.0\Omega/km$								
		CEC:			1000†	304.8 14.	0 6.4										
		CMP FT6															

24 AWG Stranded (7x32) Tinned Copper • Dual Twisted Pairs • Overall 100% Beldfoil Shield • 24 AWG Drain Wire

Datalene Insulation	Viole	t PVC	Jacket	t in Zij	-Cord	Construct	tion										
0°C	1802B	NEC: CMG CEC: CMG FT4	2	Black, Red	500 U-1000 1000		8.4 16.4 16.8	23.7Ω/M' 77.7Ω/km	18.9Ω/M' 62.0Ω/km	Х	4.57 x 9.14	110	76%	13	43	26	85

The jacket and shield are bonded so both can be removed with automatic stripping equipment.

22 AWG Stranded (7x30) Tinned Copper • Twisted Pair with Fillers • Overall 100% Beldfoil Shield + 90% TC Braid Shield • 24 AWG Drain Wire

Datalene Insulation • Black High-Flex Matte PVC Jacket																
High-Flex	1696A	1	Blue,	250	76.2 8.0	3.6	14.8Ω/M'	$4.6\Omega/M'$.234	5.94	110	76%	13	43	26	85
60°C			White	500	152.4 16.0	7.3	$48.5\Omega/km$	$15.2\Omega/km$								
The state of the s					U-304.8 32.0											
				1000	304.8 32.0	14.5										
The state of the s																
Z-Fold [®]																

BC = Bare Copper • DCR = DC Resistance • HC = High-conductivity • TC = Tinned Copper

*Capacitance between conductors. **Capacitance between one conductor and other conductors connected to shield.
†Spools and/or UnReel® cartons are one piece, but length may vary ±10% for spools and ±5% for UnReel from length shown.

AES/EBU Digital Audio Cable (cont.)

Multi-Pair Snake Cables Individually Shielded and Jacketed Pairs

Individually Shielded and Jacketed Pairs

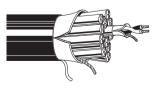
NEC: CMG (CEC: CMG FT4)

Product Description

26 AWG or 24 AWG stranded tinned copper conductor. Datalene® insulation. Pairs individually shielded with bonded Beldfoil® and have numbered and color-coded PVC jackets (see Chart 7 in the Technical Information Section of the Master Catalog for colors). Pair jackets and shields are bonded so both strip simultaneously with automatic stripping equipment. Overall Beldfoil shield plus overall Purple PVC jacket and nylon rip cord.

Datalene insulation features include low dielectric constant and a dissipation factor for high-speed, low-distortion data handling. Physical properties include good crush resistance and light weight.

Color Code: Black, Red.


Specifications

Nominal OD — Conductor	
26 AWG	.019" (.48mm)
24 AWG	,
24 AWG	.024" (.60mm)
Nominal OD — Insulation	
26 AWG	.054" (1.37mm)
24 AWG	.070" (1.78mm)
Inner Pair Jacket OD	
26 AWG	.136" (3.45mm)
24 AWG	.167" (4.24mm)
Approvals	
NEC	CEC
CMG	CMG FT4
Nominal DC Resistance (26 AWG)	
Conductor	37.3Ω/M' (122.3Ω/km)
Shield	23.1Ω/M [°] (75.8Ω/km)
Nominal DC Resistance (24 AWG)	
Conductor	23.7Ω/M' (77.7Ω/km)
Shield	18.9Ω/M' (62.0Ω/km)
Nominal Impedance	110Ω ±10Ω
Nominal Velocity of Propagation	76%
Nominal Capacitance	
Between Conductors	13 pF/Ft. (43 pF/m)

DCR = DC Resistance

 $For audio \ and \ video \ cable \ assemblies, \ visit \ \textbf{www.belden.com} \ for \ a \ list \ of \ Belden \ Certified \ Assemblers.$

26 pF/Ft. (85 pF/m)

Between Conductor/Shield*

Part	No. of		ndard gths		dard Veight	Nomi	nal OD
No.	Pairs	Ft.	m	Lbs.	kg	Inch	mm
Individua	lly Shie	elded &	Jackete	ed			
26 AWG	(7x34)	NEC: C	CMG (CE	C: CMG)			
7891A	2	500 1000	152.4 304.8	28.0 56.0	12.7 25.5	.343	8.71
7890A	4	100 250 500 1000	30.5 76.2 152.4 304.8	8.2 18.0 31.0 61.0	3.7 8.2 14.1 27.7	.399	10.13
7880A [†]	8	250 500 1000	76.2 152.4 304.8	29.8 57.0 141.0	13.5 25.9 64.1	.541	13.74
7892A	12	500 1000	152.4 304.8	85.0 174.0	38.6 79.1	.679	17.25
7893A	16	500 1000	152.4 304.8	109.5 240.0	49.8 109.1	.770	19.56
24 AWG	(7x32)	Flexib	le • NE	C: CMG	(CEC: C	MG FT4	4)
1803F	4	250 500 1000	76.2 152.4 304.8	30.0 57.5 107.0	13.6 26.1 48.6	.488	12.40
1805F	8	250 500 1000	76.2 152.4 304.8	52.3 103.5 205.0	23.8 47.0 93.2	.661	16.79
1806F	12	250 500 1000	76.2 152.4 304.8	78.8 156.0 322.0	35.8 70.9 146.4	.829	21.06
1850F	16	250 500 1000	76.2 152.4 304.8	99.5 209.5 410.0	45.2 95.2 186.4	.944	23.98
1852F	24	250 500 1000	76.2 152.4 304.8	156.0 322.0 646.0	70.9 146.4 293.6	1.205	30.61
1854F	32	250 500 1000	76.2 152.4 304.8	224.0 434.0 846.0	101.8 197.3 384.5	1.346	34.19

Length may vary -10% to +0% from length shown.

^{*}Capacitance between one conductor and other conductors connected to shield.

 $^{^{\}dagger} 7880 \text{A}$ is designed to fit large-bore all metal shells for 25-pin D-Sub connectors.

BELDEN

AES/EBU Digital Audio Cable (cont.)

Plenum-Rated, Multi-Pair Snake Cables Individually Shielded Pairs

Individually Shielded Pairs NEC: CMP (CEC: CMP FT6)

Product Description

24 AWG stranded (7x32) tinned copper conductor. Foam FEP insulation. Twisted pairs individually shielded with 100% Beldfoil®. Overall Gray fluorocopolymer jacket (except 82729 which has Natural Flamarrest® jacket). 24 AWG stranded tinned copper drain wire.

Color Code: See Chart 5 (in Belden Master Catalog)

Specifications

.024" (.60mm)
.062" (1.57mm)
CMP
CMP FT6
Non-conduit Plenum
300V RMS
23.7Ω/M' (77.7Ω/km)
18.9Ω/M' (62.0Ω/km)
100Ω
76%
13.5 pF/Ft. (44 pF/m)
22.5 pF/Ft. (73.8 pF/m)
nnected to shield.

Plenum I	ndividua	ally Shie	Ided NE	C: CMP	(CEC: CN	/IP FT6)	
24 AW0	ì						
82729	2	U-1000	U-304.8	27.0	12.3	.255	6.48
		1000	304.8	28.0	12.7		
89729	2	500 1000	152.4 304.8	18.5 31.0	8.4 14.1	.261	6.63
89730	3	500 1000	152.4 304.8	23.0 40.0	10.5 18.2	.278	7.06
89728	4	500 1000	152.4 304.8	26.5 50.0	12.0 22.7	.307	7.80
89705	5	500 1000	152.4 304.8	30.5 62.0	13.9 28.2	.327	8.31
89731	6	500 1000	152.4 304.8	35.0 71.0	15.9 32.3	.361	9.17
89757	7	500 1000	152.4 304.8	39.5 80.0	18.0 36.4	.361	9.17
89732	9	1000	304.8	106.0	48.2	.433	11.00
89734	12	500	152.4	71.0	32.3	.498	12.65
		1000	304.8	140.0	63.6		

152.4

304.8

100.5

204.0

45.7

927

.616

15.65

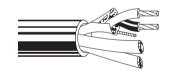
Standard

Lengths

Part No.

89758

of


Standard Unit Weight

Nominal OD

Spools are one piece, but length may vary ±10% from length shown.

500

1000

18

AES/EBU Digital Audio Cable

TIA/EIA-568-B.2 Category 5e Patch Cable

Description	Part No.	UL NEC/ C(UL) CEC	No. of		dard gths		dard Veight	Nomi	nal OD	Nom. Imp.	Nom. Vel.	No Capac	m. itance	Max. DCR (Ω)	Max. DCR Unbal.		Max. Atten. (db/	Fitted Imped	Min. RL	Min. SRL
	NO.	Type	Pairs	Ft.	m	Lbs.	kg	Inch	mm	(Ω <u>)</u>	of Prop.	pF/Ft.	pF/m	(<u>\$2</u>) 100m		(MHz)	(ub/ 100m)	(Ω <u>)</u>	(dB)	(dB)

24 AWG Stranded (7 x 32) BC Conductors • Bonded-Pairs

Non Ple	enum •	Polyolefin	Ins	ulation	• PVC	Jack	et (Bl	ack, E	Brown,	Red,	Orange,	Yellow	, Gree	n, Blue	, Violet,	Gray,	White)		
300V RMS	1353A	NEC:	1	500	152.4	5.5	2.5	0.126	3.20	100	70%	15	49	9.0 3.	0 1	2.4	105±15	20.0	23.0
		CMR		U-1000	U-304.8	9.0	4.1								4	4.9	100±15	23.0	23.0
		CEC:		U-1000	U-304.8	9.0	4.1								8	6.9	100±15	24.5	23.0
		CMG FT4		1000	304.8	9.0	4.1								10	7.8	100±15	25.0	23.0
															16	9.9	100±15	25.0	23.0
		(2000)													20	11.1	100±15	25.0	23.0
		(CCCCO)													25	12.5	100±15	24.3	22.0
															31.25	14.1	100±15	23.6	21.0
															62.5	20.4	100±15	21.5	18.0
															100	26.4	100±15	20.1	16.0

DCR = DC Resistance

AES/EBU Digital Audio Cable (cont.)

Maximum Recommended Transmission Distance at Digital Audio Data Rates* (AES3-2003)**

		6 N	ИHz	12 N	ИHz	25	ИНz
	Part Number	Ft.	m	Ft.	m	Ft.	m
1353A		1112	339	772	235	525	160
9180, 7	880A Series	813	248	633	193	474	144
1800F		664	203	424	129	279	85
1800B,	1801B, 1802B, 1803F Serie	es 1105	337	877	267	649	198
1696A		1538	469	1250	381	1015	309
179DT	(AES3) [†] ◆	1005	306	722	220	522	159
	(AES-3id) ^{††}	402	123	289	88	209	64
1855A	(AES3) [†] ◆	1992	607	1538	469	1111	339
	(AES-3id) ^{††}	796	242	615	188	444	135
1505A	(AES3) [†] ◆	2911	887	2222	677	1538	469
	(AES-3id) ^{††}	1164	355	888	270	615	188
1505F	(AES3) [†] ◆	2985	910	2041	622	1389	423
	(AES-3id) ^{††}	1194	364	816	249	556	169
1694A	(AES3) [†] ◆	3407	1039	2500	762	2000	610
	(AES-3id) ^{††}	1363	416	1000	305	800	244
1694F	(AES3) [†] ◆	3660	1116	2411	735	1701	518
	(AES-3id) ^{††}	1811	552	1193	364	841	256

Digital Audio Attenuation

	6 N	lHz	12 1	ИHz	25 [MHz
Part Number	dB/ 100 Ft.	dB/ 100m	dB/ 100 Ft.	dB/ 100m	dB/ 100 Ft.	dB/ 100m
1353A	2.59	8.50	3.81	12.50	3.80	12.50
9180, 7880A Series	2.46	8.07	3.16	10.37	4.22	13.85
1800F	3.01	9.88	4.72	15.49	7.17	23.52
1800B, 1801B, 1802B, 1803F Seri	es 1.81	5.94	2.28	7.48	3.08	10.10
1696A	1.30	4.27	1.60	5.25	1.97	6.46
179DT (coax)	1.99	6.53	2.77	9.09	3.83	12.57
1855A (coax)	1.00	3.29	1.30	4.27	1.80	5.91
1505A (coax)	.69	2.25	.90	2.95	1.30	4.27
1505F (coax)	.67	2.20	.98	3.22	1.44	4.72
1694F (coax)	.55	1.80	.83	2.70	1.18	5.90
1694A (coax)	.59	1.93	.80	2.62	1.00	3.28

Values reflect typical results.

Precision Video Cable for Analog and Digital

DigiTruck® Miniature Coax for Broadcast Production Trucks

Barriston	Part	UL NEC/	Standard	l Lengths	Stan Unit V	dard Veight	Conductor (stranding)	Nom Core		Shielding	Nomir	nal OD	Nom.	Nom. Vel.		inal itance	A	Nominal ttenuatio	
Description	No.	Type	Ft.	m	Lbs.	kg	Diameter Nom. DCR	Inch	mm	Materials Nom. DCR	Inch	mm	lmp. Ω	of Prop.	pF/Ft.	pF/m	MHz	dB/ 100 Ft.	dB/ 100m

28.5 AWG Solid .012" Bare Copper • Duofoil (100%)+ 95% Tinned Copper Braid Shield

	00	. Dai o	oppo.	Duoi	011 (10	0 / 0 / 1	33/0 1111	1100 00	ppo	orala ora	ola								
Gas-injec	ted Foam	HDPE	Insula	ation •	PVC	Jack	ket (Red,	Green,	Blue,	White, Y	∕ellow,	Brown,	Orang	je, C	Gray,	Violet,	Black)		
DigiTruck SDI/HDTV Digital Video 75°C	179DT	NEC: CM	500 1000	152.4 304.8	4.2 8.0	1.9 3.6	28.5 AWG (solid) .012" BC 108Ω/M' 350Ω/km	.056	1.42	Duofoil (100%) + 95% TC Braid 8.9Ω/M' 29.2Ω/kn	.100 n	· · · · · · · · ·	75	77%	17.4	57.4	1 3.6 6 10 12 25 71.5 135 270 360 720 750 1000 1500 2250 3000 4500	1.2 1.5 2.0 2.3 2.8 3.8 5.7 7.5 10.5 12.2 15.1 17.5 17.8 20.7 25.4 31.5 36.7 47.5	3.9 5.1 6.5 7.4 9.1 12.6 18.6 24.6 34.5 40.0 49.5 57.4 67.9 83.3 103.4 120.4 155.8

BC = Bare Copper • HDPE = High-density Polyethylene • TC = Tinned Copper

 ^{*} Sampling rates include: 38 KHz, 44.1 KHz, 48 KHz, 96 KHz and 192 KHz.

** Longer transmission distances are achievable but are contingent upon specific input/output voltages.

† Transmission distance calculations assume minimum allowable output signal amplitude (2V per AES3-2003) and minimum allowable input signal amplitude (200mV per AES3-2003).

^{††} Per AES-3id-2001, when using analog video distribution equipment to implement AES-3id, maximum transmission distances are 40% of AES3 values assuming a minimum allowable output signal amplitude of 1V and a minimum allowable input signal amplitude of 320mV.

Implementation of AES3 with coaxial cable and 110-75Ω baluns can be achieved with transmission distances of 91% of the AES3 coaxial distances listed above.

Precision Video Cable for Analog and Digital (cont.)

Sub-Miniature RG-59/U Type

Description	Part	UL NEC/	Standard	Lengths	Health M	dard Veight	Conductor (stranding)		ninal e OD	Shielding	Nomir	nal OD	Nom.	Nom. Vel.	Nom Capac	inal itance		Nominal tenuatio	n
Description	No.	C(UL) CEC Type	Ft.	m	Lbs.	kg	Diameter Nom. DCR	Inch	mm	Materials Nom. DCR	Inch	mm	lmp. (Ω)	of Prop.	pF/Ft.	pF/m	MHz	dB/ 100 Ft.	dB/ 100m

25 AWG Stranded (19x37) .021" Bare Copper • Duofoil + 95% Tinned Copper Braid Shield

23 AWG Solid .023" Bare Copper • Duofoil + 95% Tinned Copper Braid Shield

Gas-inject	ted Foa	m HDPE	E Insula	tion • I	PVC .	Jacke	t (Available	e in 10	ocolor color	s)*									
SDI/HDTV	1855A	NEC:	500▲	152.4	9.0	4.1	23 AWG	.102	2.59	Duofoil	.159	4.03	75	83%	16.3	53.5	1	.4	1.3
Digital Video		CMR	1000	304.8	18.0	8.2	(solid)			+ 95%							3.6	.8	2.6
75°C		CEC:	U-1000 *	U-304.8	18.0	8.2	.023"			TC Braid							6	1.0	3.3
	\wedge	CMG FT4					BC			4.1Ω/M'		available			ndled.		10	1.2	3.9
							20.1Ω/M'			$13.5\Omega/km$	See 7	7787A th	rough 7	792A.			12	1.3	4.3
							$65.9\Omega/\text{km}$				100%	6 Sweep	tested	5 MHz to	4 5 GH	7	25	1.8	5.9
`											.007	остоор	1001041	0 111112 11			71.5	3.1	10.2
																	135	3.8	12.5
																	270	5.4	17.7
																	360	6.2	20.3
																	540	7.7	25.3
																	720	9.5	31.2
																	750	9.6	31.5
																	1000	10.5	34.5
																	1500	13.0	42.7
▲ 500 ft. put-up a	vailable in Bl	ack only.															2250	16.0	52.5
 U-1000 ft. put-u 	ıp available i	n Gray only.															3000	18.5	60.7
* Available in Brow	wn, Red, Ora	nge, Yellow, G	reen, Blue, Vi	olet, Gray, V	Vhite or	Black.											4500	24.6	80.7

23 AWG Solid .023" Bare Copper • Duofoil + 95% Tinned Copper Braid Shield

						2 -													
Plenum •	Foam I	FEP Insul	lation •	Flama	arres	t [®] Jac	ket (Avail	able ir	10 cc	olors)*									
SDI/HDTV Digital Video 75°C	1855P	NEC: CMP CEC: CMP FT6	1000	304.8	22.0	9.9	23 AWG (solid) .023" BC 20.1Ω/M' 65.9Ω/km	.102	2.59	Duofoil + 95% TC Braid 4.1Ω/M' 13.5Ω/km	.159	4.03 Sweep	75 tested.	83% 5 MHz to	16.3 4.5 GH	53.5 z.	1 3.6 10 71.5 135 270 360 540 720 750 1000 1500 2250	.4 .8 1.3 3.0 4.1 5.8 6.8 8.6 10.1 10.4 12.2 15.5 19.5	1.3 2.6 4.1 10.0 13.4 19.0 22.3 28.1 33.2 34.0 40.1 50.7 64.1
* Available in Brow	n, Red, Orai	nge, Yellow, Gre	en, Blue, Vic	olet, Gray, \	White or I	Black.											3000 4500	23.2 29.6	76.1 97.1

BC = Bare Copper • HDPE = High density Polyethylene • TC = Tinned Copper

Precision Video Cable for Analog and Digital (cont.)

RG-59/U Type

D	Part	UL NEC/	Standard	Lengths	Stan Unit V	dard Veight	Conductor (stranding)	Nom Core		Shielding	Nomir	nal OD	Nom.	Nom. Vel.	Non Capac	ninal itance		Nominal tenuatio	
Description	No.	C(UL) CEC Type	Ft.	m	Lbs.	kg	Diameter Nom. DCR	Inch	mm	Materials Nom. DCR	Inch	mm	lmp. (Ω)	of Prop.	pF/Ft.	pF/m	MHz	dB/ 100 Ft.	dB/ 100m

20 AWG Solid .032" Bare Copper • Duofoil + 95% Tinned Copper Braid Shield

Gas-injec	tea ro		insula	tion '	PV	Jaci	tet (Avalla	bie in	TU CO	ors)*									
SDI/HDTV	1505A	NEC:	500 ▲	152.4		8.0	20 AWG	.145	3.68	Duofoil	.234	5.94	75	83%	16.3	53.5	1	.3	1.0
Digital Video		CMR	1000 *	304.8		16.4	(solid)			+ 95%							3.6	.6	2.0
75°C		CEC:	5000 *	1524.0	165.4	75.2	.032"			TC Braid							6	.7	2.2
		CMG FT4					BC			3.8Ω/M'							10	.9	3.0
	\triangle						10.0Ω/M'			$12.5\Omega/km$	For P	lenum v	ersion o	of 1505A.			12	.9	3.1
							$32.8\Omega/\text{km}$					1506A.	5151011 0	11 1000A,			25	1.3	4.3
- Junio	∇										300	JUUA.					71.5	2.1	6.9
											Also	available	in bun	dled vers	ions.		135	2.7	8.9
											See 7	7794A th	rough 7	7798A.			270	3.8	12.5
											1000	/ Cwoon	toctod	5 MHz to	4 5 CH	7	360	4.4	14.4
											1007	o Sweeh	เธอเธน.	J WILLY U	4.5 UII	۷.	540	5.5	18.0
																	720	6.4	21.0
																	750	6.5	21.3
																	1000	7.6	24.9
																	1500	9.3	30.5
																	2250	11.6	38.1
▲500 ft. put-up av	ailable in Bla	ick, Red or Blue	only.														3000	13.4	44.0
*1000 ft. and 500	Oft. put-ups	available in all to	en colors: Bl	ack, Browr	n, Red, C	Orange, Ye	low, Green, Blue	, Violet, G	ray or Wh	ite							4500	18.0	59.0

22 AWG Stranded (7x29) .031" Bare Compacted Copper* • Double Tinned Copper Braid Shield

Gas-inicat	od Foam	HDDE	Incula	tion .	DVC	lacket	· (Matta	Black	Dod	Groop Pluo	Vollo	w W/b	ito or	Violot)					
Gas-inject High-Flex SDI/HDTV Video Patch 75°C	1505F	HDPE NEC: CM CEC: CM	Insula 1000	304.8		Jacket 20.0	t (Matte 22 AWG (7x29) .031" BCC 12.2Ω/M' 40.0Ω/km	.145	Red, 3.68	Green, Blue TC Double Braid 95% Shield Coverage 2.4Ω/M' 7.8Ω/km	.242	6.15	75	Violet) 80% 5 MHz to	17.0	55.7	1 3.6 6 10 12 25 71.5 135 270 360 540 720 750 1000 1500	.2 .5 .7 .9 1.0 1.4 2.5 3.5 5.1 6.0 7.4 8.9 10.5 13.3	.7 1.6 2.2 2.9 3.2 4.7 8.2 11.5 16.7 24.3 28.5 29.2 34.4 43.6
*Compacted conduc	tor combines im	pedance uni	formity of s	solid condu	ctors and	1 "nick-resis	tance" of str	anded con	ductor.								2250 3000 4500	16.9 20.3 28.2	55.4 66.6 92.5

20 AWG Solid .032" Bare Copper • Duofoil + 95% Tinned Copper Braid Shield

										-									
Plenum •	Foam I	FEP Insul	ation •	Flama	arres	t [®] Jac	ket (Avail	able ir	10 cc	olors)									
SDI/HDTV	1506A	NEC:	500 🕶	152.4		7.5	20 AWG	.133	3.38	Duofoil	.199	5.05	75	84%	16.1	52.8	1	.3	1.0
Digital Video		CMP	1000 T	304.8	33.0	15.0	(solid)			+ 95%							3.6	.6	2.0
75°C		CEC:					.032"			TC Braid							10	1.1	3.4
	\wedge	CMP FT6					BC			3.8Ω/M'							71.5	2.3	7.4
							10.0Ω/M'			$12.5\Omega/km$							135	3.2	10.5
KKKKK							$32.8\Omega/\text{km}$				1000/	Curoon	tootod	E MU-+	0 0 CU-		270	4.6	14.9
	\sim										100%	o Sweep	testeu.	5 MHz t	0 3 GHZ.		360	5.3	17.2
																	540	6.4	21.0
																	720	7.3	23.9
																	750	7.5	24.6
																	1000	9.4	30.8
																	1500	12.8	42.0
Suitable for Outdoo																	2250	17.5	57.4
▼500 ft. put-up ava																	3000	21.9	71.8
1000 ft. put-up av	ailable in all	ten colors: Black	k, Brown, Red	, Orange,	Yellow,	Green, Blu	ıe, Violet, Gray o	r Natural.									4500	23.6	77.4

BC = Bare Copper • BCC = Bare Compacted Copper • DCR = DC Resistance • HDPE = High-density Polyethylene • TC = Tinned Copper

For Connector Cross Reference, visit www.belden.com or call Customer Service 1-800-BELDEN-1. For audio and video cable assemblies, visit the Belden Web site for a list of Belden Certified Assemblers.

 $[\]label{eq:compacted} \begin{tabular}{ll} $$^{\text{c}}$ compacted conductor combines impedance uniformity of solid conductors and "nick-resistance" of stranded conductor. \\ $^{\text{c}}$ pools are one piece, but length may vary $\pm 10\%$ from length shown. \\ \end{tabular}$

Precision Video Cable for Analog and Digital

Low Loss Serial Digital Coax RG-6/U Type and RG-11/U Type

Description	Part	UL NEC/	Standard	Lengths	Stan Unit V	dard Veight	Conductor (stranding)	Nom Core		Shielding	Nomir	nal OD	Nom.	Nom. Vel.	Nom Capac	inal itance		Nominal Itenuatio	
Description	No.	Type	Ft.	m	Lbs.	kg	Diameter Nom. DCR	Inch	mm	Materials Nom. DCR	Inch	mm	lmp. (Ω)	of Prop.	pF/Ft.	pF/m	MHz	dB/ 100 Ft.	dB/ 100m

RG-6/U Type • 18 AWG Solid • .040" Bare Copper • Duofoil® + 95% Tinned Copper Braid Shield

Gas-injected Fo	am HDPE	Insula	ation	• PV(Jac	ket (Availa	ble in	10 col	ors)*								
SDI/HDTV Digital Video 75°C **Soo ft. put-up available in B * Available in Black, Brown, R	ed, Orange, Yellov			45.0 207.0		18 AWG (solid) .040" BC 6.4Ω/M' 21.0Ω/km	.180	4.57	Duofoil + 95% TC Braid 2.8Ω/M' 9.2Ω/km	see 16 Also a See 7	vailable 710A thr	in bund ough 7	lled versi	53.1 z.	1 3.6 6 10 12 25.0 71.5 135 270 360 540 720 1000 1500 2250 3000 4500	.2 .5 .6 .7 .8 1.0 1.6 2.1 3.0 4.9 5.0 5.9 7.3 9.1 10.7 14.7	.7 1.6 1.9 2.6 3.3 5.2 6.9 9.8 11.2 14.1 16.4 19.4 24.0 29.9 35.1 48.2

Plenum • Fo	am FEI	P Insulation	• Flan	narre	est Ja	cket (Avai	lable i	in 10 c	olors)**									
SDI/HDTV 169 Digital Video 75°C	(NEC: 500 †* CMP 1000 † CEC: IP FT6	152.4 304.8	22.5 45.0	10.2 20.5	18 AWG (solid) .040" BC 6.4Ω/M' 21.0Ω/km	.170	4.32	Duofoil + 95% TC Braid 2.8Ω/M' 9.2Ω/km	.234	5.94 Sweep	75 tested.	82% 5 MHz to	16.2 4.5 GHz	53.1 z.	1 3.6 10 71.5 135 270 360 540 720 750 1000 1500 2250	.2 .5 .7 1.7 2.4 3.4 4.0 5.2 6.1 7.3 7.5 9.2 11.6	.8 1.5 2.5 5.8 7.9 11.2 13.1 17.1 20.0 23.9 24.6 30.2 38.0

Dual RG-6/U Type • 16 AWG Solid • .040" Bare Copper • Duofoil + 95% Tinned Copper Braid Shield

Gas-injed	ted Fo	am HDPE	Insul	ation	Inn	er PV	C Jackets	s (Bla	ck, Red	d) • Ove	rall Bl	ack F	VC .	Jacke	t				
SDI/HDTV Digital Video '5°C	1694D	NEC: CMP CEC: CMP FT4	500 1000	152.4 304.8	66.0	29.9	18 AWG (solid) .040" BC	.180	4.57	Duofoil +95% TC Braid 2.8Ω/M'	0.344 x 0.618	8.74 x 15.70	75	82%	16.2	53.1	1 3.6 6 10 12	.2 .5 .6 .7	1.6 1.9 2.3 2.6
							6.4Ω/M' 21.0Ω/km			9.2Ω/km							25.0 71.5 135 270 360	1.0 1.6 2.1 3.0 3.4	3.3 5.2 6.9 9.8
																	540 720 750	4.3 4.9 5.0	14. 16. 16.
																	1000 1500 2250	5.9 7.3 9.1	19. 24. 29.
																	3000 4500	10.7 14.7	35. 48.

 $BC = Bare \ Copper \ \bullet \ DCR = DC \ Resistance \ \bullet \ HDPE = High-density \ Polyethylene \ \bullet \ TC = Tinned \ Copper$

 $[\]dagger$ Spools are one-piece, but length may vary $\pm 10\%$ from length shown.

Precision Video Cable for Analog and Digital (cont.)

Low Loss Serial Digital Coax RG-6/U Type and RG-11/U Type

Danadatian	Part	OL IILO		l Lengths	Stan Unit V		Conductor (stranding)	Nom Core		Shielding	Nomir	nal OD		Nom. Vel.	Nom Capac	inal itance		Nominal tenuatio	
Description	No.	C(UL) CEC Type	Ft.	m	Lbs.	kg	Diameter	Inch	mm	Materials Nom. DCR	Inch	mm	lmp. (Ω)	of Prop.	pF/Ft.	pF/m	MHz	dB/ 100 Ft.	dB/ 100m

RG-6/U Type • 18 AWG Solid • .040" Bare Copper • Duofoil® + 95% Tinned Copper Braid Shield

Gas-injec	ted Foa	m HDPE	Insul	ation •	Floo	ding	Compou	nd • E	Black	and Ligh	nt Blu	e PE	Jack	æt					
SDI/HDTV Digital Video 75°C	1694WB	NEC: CMP CEC: CMP FT4	1000 2500 5000	304.8 762.0 1524.0	69.0	31.3	18 AWG (solid) .040" BC 6.4Ω/M' 21.0Ω/km	.274	7.0	Duofoil +95% TC Braid 2.8Ω/M' 9.2Ω/km	.274	7.00	75	82%	16.2	53.2	1 3.6 6 10 12 25.0 71.5 135 270 360 540 720 750 1000 1500 2250 3000 4500	.2 .5 .6 .7 .8 1.0 1.6 2.1 3.0 3.4 4.3 4.9 5.0 5.9 7.3 9.1 10.7 14.7	.7 1.6 1.9 2.3 2.6 3.3 5.2 6.9 9.8 11.2 14.1 16.4 19.4 24.0 29.9 35.1 48.2

19 AWG Stranded (7x27) .040" Bare Compacted Copper* • Double Tinned Copper Braid Shield

		, , ,			1		- 1			1-1								
Gas-inject	ed Foa	am HDPE	Insula	tion •	PVC	Jacl	ket Low	Gloss	(Black,	Red, Gre	een,	Blue,	Yellow,	White	or Violet			
High Flex SD1/HDTV Video Patch 75°C	1694F	NEC: CMR CEC: CMG FT4	1000	304.8	54.0	24.7	19 AWG .040" BCC 8.5Ω/M' 27.9Ω/km	0.18	4.57	Double 93% TC Braid 99% Tota Coverage 1.7Ω/M' 5.6Ω/km	ll ;			81%	16.2 to 4.5 GHz	1 3.6 6 10 12 25.0 71.5 135 270 540 720 750 1000 1500 2250	.2 .5 .6 .7 .8 1.2 2.0 2.8 4.0 4.7 5.9 6.9 7.0 8.2 10.4 13.2	.8 1.5 1.8 2.3 2.7 5.9 6.6 9.2 13.1 15.4 19.4 22.6 23.0 26.9 34.1 43.3
*Compacted conduct			iformity of s	olid conduc	tors and	"nick-re	sistance" of st	randed co	nductor.							3000 4500	15.6 19.8	51.2 64.9

RG-11/U Type • 16 AWG Solid .051" Bare Copper • Duofoil + 95% Tinned Copper Braid Shield + Beldfoil® with Shorting Fold

^{*} Available in Black, Brown, Red, Orange, Yellow, Green, Blue, Violet, Gray or White.

^{**}BCC = Bare Copper • BCC = Bare Compacted Copper • DCR = DC Resistance • HDPE = High-density Polyethylene • PE = Polyethylene • TC = Tinned Copper * Compacted conductor combines impedance uniformity of solid comductors and "nick-resistance" of stranded conductor.

Precision Video Cable for Analog and Digital (cont.) Low Loss Serial Digital Coax RG-6/U Type and RG-11/U Type

Description	Part	UL NEC/	Standard	Lengths		idard Veight	Conductor (stranding)		ninal e OD	Shielding	Nomir	nal OD	Nom.	Nom. Vel.	Nom Capac			Nominal tenuatio	
Description	No.	C(UL) CEC Type	Ft.	m	Lbs.	kg	Diameter Nom. DCR	Inch	mm	Materials Nom. DCR	Inch	mm	lmp. (Ω)	of Prop.	pF/Ft.	pF/m	MHz	dB/ 100 Ft.	dB/ 100m
RG-11/U T	ype •	14 AWG	Solid .0	64" Bar	е Сор	per •	Duofoil + 9	95% 1	inned	Copper B	Braid S	hield							
Gas-inject	ted Fo	am HDPI	E Insul	ation •	PVC	Jack	et (Availal	ble in	10 col	ors)*									
SDI/HDTV Digital Video 75°C	7731A	NEC: CMR CEC: CMG FT4	500 * 1000 4000	152.4 304.8 1219.2	94.0	21.8 42.8 12.3	14 AWG (solid) .064" BC 2.55Ω/M' 8.2Ω/km	.280	7.11	Duofoil + 95% TC Braid 1.5Ω/M' 4.9Ω/km 5.6Ω/km	.405	10.3 Sweep	75 tested. §	85% 5 MHz to	16.0 4.5 GH	52.4 z.	1 3.6 10 71.5 135 270 360 540 720 750 1000 1500 2250	.2 .3 .5 1.1 1.5 2.1 2.5 3.1 3.6 3.7 4.3 5.5 6.9	.5 1.0 1.5 3.6 4.8 6.9 8.0 10.0 11.7 12.0 14.1 18.0 22.6
* Available in Black, \$500 ft_put-up avail			w, Green, Bl	ue, Violet, G	ray or Wh	nite.											3000 4500	8.2 9.8	26.9 32.1

RG-11/U Type • 14 AWG Solid .064" Bare Copper • Duofoil + 95% Tinned Copper Braid Shield

Plenum •	Foam F	EP Insula	ation •	Fluore	осоро	olymer	Jacket (Availal	ble in 1	0 colors)*	*								
SDI/HDTV Digital Video 150°C	7732A	NEC: CMP CEC: CMP FT6	500* 1000 2000*	152.4 304.8 609.6	45.0 88.0 176.0	20.5 40.0 80.0	14 AWG (solid) .064" BC 2.5Ω/M' 8.2Ω/k	.274	6.96	Duofoil + 95% TC Braid 2.5Ω/M' 8.2Ω/km	.348	8.84 Sweep	75 tested.	83% 5 MHz to	16.3 o 4.5 GH	53.5 z.	1 3.6 10 71.5 135 270 360 540 720 750	.2 .3 .4 1.2 1.8 2.6 3.1 3.9 4.6 4.7	.5 .9 1.3 4.1 5.8 8.5 10.2 12.8 15.0 15.4
* 500 ft. put-up a * 2000 ft. put-up ** Available in Blac Suitable for Outdoo	available in N ck, Brown, Re or and Direct	latural only. d, Orange, Yello Burial applicatio	w, Green, Bl														1000 1500 2250 3000 4500	5.5 6.9 9.2 10.2 15.4	18.0 22.7 30.2 33.5 50.5
Plenum •	PTFE I	nsulation	• Fluo	rocop	olym	er Jac	ket (Avai	lable i	n 10 c	olors)**									
ODI/UDTI/	770011	NEO	F00	450.4	45.0	00 5	4 4 414/0	070	7.04	D - (-1)	0.45	0.70	7-	00	400	F0 F			

Plenum •	PTFE I	nsulation	• Fluo	rocop	olym	er Jac	ket (Avai	able i	n 10 cc	olors)**									
SDI/HDTV Digital Video 150° C	7732LL	NEC: CMP CEC: CMP FT6	500 1000	152.4 304.8	45.0 90.0	20.5 40.8	14 AWG (solid) .064" BC 2.5Ω/M' 8.2Ω/km	.276	7.01	Duofoil + 95% TC Braid 1.6 Ω /M' 5.3 Ω /km	.345	8.76 Sweep	75 tested.	83 5 MHz t	16.3 o 4.5 GH	53.5	1 3.6 10 71.5 135 270 360 540 720 750 1000 1500 2250 3000	.1 .3 .5 1.3 1.7 2.3 2.7 3.3 3.8 3.9 4.5 5.7 7.0 8.2	0.3 1.0 1.6 4.1 5.4 7.4 8.7 10.7 12.5 12.7 14.9 18.5 22.9 26.8
** Available in Bla	ack, Brown, Re	d, Orange, Yellov	w, Green, Bl	ue, Violet,	Gray or	Natural											4500	10.2	33.5

BC = Bare Copper • BCC = Bare Compacted Copper • DCR = DC Resistance • HDPE = High-density Polyethylene • TC = Tinned Copper

For Connector Cross Reference, visit www.belden.com or call Customer Service 1-800-BELDEN-1.

VideoFLEX® Snake Cable for Precision for Analog and Digital Bundled Miniature and RG-59/U Type

December 1	Part	UL NEC/	No.		dard gths	Stan Unit V	dard Veight	Conductor (stranding)		ninal e OD	Shielding	Nomi	nal OD	HOIII.	Nom. Vel.	Nomi Capaci			Nomina tenuati	
Description	No.	C(UL) CEC Type	of Cond.	Ft.	m	Lbs.	kg	Diameter Nom. DCR	Inch	mm	Materials Nom. DCR	Inch	mm	lmp. (Ω)	of Prop.	pF/Ft.	pF/m	MHz	dB/ 100 Ft.	dB/ 100m

Miniature •	23 A	WG Soli	d .02	3" Bare	Copper • D	uofoil	+ 95% Tin	ned Co	pper	Braid (10	0% SI	hield C	overa	age)					
Solid Copp	er, G	as-injed	ted	Foam I	HDPE Insu	lation	• Overal	l Matt	e Bla	ack PVC	Jack	et (Co	lor Co	ode: Se	e ch	nart I	pelow)	
SDI/HDTV Digital Video 75°C (1855A Bundled)	7787A	NEC: CMR CEC: CMG FT4	3	500 1000	152.4 47.5 304.8 94.0	21.6 42.7	23 AWG (solid) .023" BC 20.1Ω/M' 65.9Ω/km	.102 Coa .159	2.55 ax 0D: 4.03	Duofoil + 95% TC Braid 4.1Ω/M' 13.5Ω/km	.432	10.97	75	83% 1	6.5	54.1	1 3.6 10 71.5 135 270 360 540 720	.4 .8 1.2 3.2 3.9 5.5 6.3 7.9 9.7	1.3 2.6 3.9 10.5 12.8 18.0 20.7 25.9 31.8
	7788A	NEC: CMR CEC: CMG FT4	4	1000	304.8111.0	50.5	same as above	.102 Coa: .159	2.55 x OD: 4.03	same as above	.481	12.22					750 1000 1500 2500 3000	9.8 10.7 13.3 16.3 18.9	32.2 35.1 43.6 53.5 62.0
	7789A	NEC: CMR CEC: CMG FT4	5	500 1000	152.4 72.5 304.8141.0	33.0 64.1	same as above	.102 Coax .159	2.55 OD: 4.03	same as above	.539	13.69					4500	24.6	80.7
	7790A	NEC: CMR CEC: CMG FT4	6	500 1000	152.4 88.5 304.8175.0	40.2 79.5	same as above	.102 Coax .159	2.55 OD: 4.03	same as above	.597	15.16							
	7791A	NEC: CMR CEC: CMG FT4	10	500 1000	152.4155.5 304.8303.0	70.7 137.7	same as above	.102 Coax .159	2.55 OD: 4.03	same as above	.796	20.22		Sweep te	sted	5 MHz	? to 3 GF	1Z.	
	7792A	NEC: CMR CEC: CMG FT4	12	500 1000	152.4171.5 304.8353.0	78.0 160.5	same as above	.102 Coax .159	2.55 OD: 4.03	same as above	.825	20.96							

RG-59/U Type • 20 AWG Solid .032" Bare Copper • Duofoil + 95% Tinned Copper Braid (100% Shield Coverage)

-										`				0 ,				
ed Fo	am HDF	E Ins	sulatio	n • Overal	II Matte	e Black	PVC J	lacke	t (Color C	ode: S	See ch	art be	elow)					
7794A	NEC: CMR CEC: CMG FT4	3	500 1000	152.4 94.5 304.8188.0	43.0 85.5	20 AWG (solid) .032" BC $10.0\Omega/M'$ 32.8 Ω/km	.145 Coo .235	3.68 ax 0D: 5.97	Duofoil $+ 95\%$ TC Braid $3.8\Omega/M'$ $12.5\Omega/km$.631	16.03	75	83%	16.3	53.1	1 3.6 10 71.5 135 270 360 540 720	.3 .6 .9 2.1 2.8 3.9 4.5 5.6	1.0 2.0 3.0 6.9 9.2 12.8 14.8 18.4 21.3
7795A	NEC: CMR CEC: CMG FT4	4	500 1000	152.4116.5 304.8237.0	53.0 107.7	same as above	.145 Coa .235	3.68 x OD: 5.97	same as above	.706	17.93					750 1000 1500 2500	6.6 7.8 9.5 11.8	21.7 25.6 31.2 38.7 44.9
7796A	NEC: CMR CEC: CMG FT4	5	500 1000	152.4150.0 304.8293.0	68.2 133.2	same as above	.145 Coa .235	3.68 x OD: 5.97	same as above	.790	20.07					4500	18.0	59.0
7798A	NEC: CMR CEC: CMG FT4	10	500 1000	152.4319.5 304.8625.0	145.2 284.1	same as above	.145 Coa .235	3.68 x OD: 5.97	same as above	1.166	29.62		Sweep	tested	I 5 MHz	to 3 GH	łz.	
	7794A 7795A 7796A	7794A NEC:	7794A NEC: 3 CMR CEC: CMG FT4 7795A NEC: 4 CMR CEC: CMG FT4 7796A NEC: 5 CMR CEC: CMG FT4 7798A NEC: 10 CMR CEC: CMG FT4	7794A NEC: 3 500 CMR 1000 CEC: CMG FT4 7795A NEC: 4 500 CMR 1000 CEC: CMG FT4 7796A NEC: 5 500 CMR 1000 CEC: CMG FT4 7798A NEC: 10 500 CMR 1000 CEC: CMG FT4 7798A NEC: 10 500 CMR 1000 CEC:	7794A NEC: 3 500 152.4 94.5 CMR 1000 304.8 188.0 7795A NEC: 4 500 152.4 116.5 CMR 1000 304.8 237.0 CEC: CMG FT4 7796A NEC: 5 500 152.4 150.0 CMR 1000 304.8 293.0 CEC: CMG FT4 7798A NEC: 10 500 152.4 319.5 CMR 1000 304.8 625.0 CEC: CMR 1000 304.8 625.0	7794A NEC: 3 500 152.4 94.5 43.0 CMR CEC: CMG FT4 7795A NEC: 4 500 152.4116.5 53.0 CMR 1000 304.8237.0 107.7 CEC: CMG FT4 7796A NEC: 5 500 152.4150.0 68.2 CMR 1000 304.8293.0 133.2 CEC: CMG FT4 7798A NEC: 10 500 152.4319.5 145.2 CMR CEC: CMG FT4 7798A NEC: 10 500 304.8625.0 284.1 CEC:	T794A NEC: 3 500 152.4 94.5 43.0 20 AWG	T794A NEC: 3 500 152.4 94.5 43.0 20 AWG .145 CMR CEC: CMG FT4 STATE CMR 1000 304.8 188.0 85.5 (solid) Cor .032" .235 BC 10.0Ω2/M' 32.8Ω/km 32.8Ω/km	T794A NEC: 3 500 152.4 94.5 43.0 20 AWG .145 3.68 CMR	NEC 4 500 152.4 116.5 53.0 5.97 3bove CEC CMG FT4 S 5.00 152.4 150.0 68.2 3 304.8 293.0 133.2 36.8 30.0 304.8 250.0	NEC 4 500 152.4 116.5 53.0 53.0 53.0 53.2 5.97 1000 304.8 237.0 107.7 as Coax OD: as CEC: CMG FT4 CCC: CMG FT4 CM	NEC 4 500 152.4 116.5 53.0 304.8 237.0 107.7 as cec cec	NEC 4 500 152.4 116.5 53.0 53.0 53.0 52.4 116.5 53.0 5.97 3bove CEC CMG FT4 Solution Solut	Total Property Pr	NEC 10 100 152.4 16.5 53.0 152.4 15.0 152.4 15.0 152.4 15.0 152.4 15.0 152.4 15.0 152.4 15.0 152.4 15.0 152.4 15.0 152.4 15.0 152.4 15.0 152.4 15.0 152.4 15.0 15.0 152.4 15.0 15.0 152.4 15.0 15	Total Post Post	T794A NEC NEC A Sou Sou	T794A NEC 10 South South

BC = Bare Copper • DCR = DC Resistance • HDPE = High-density Polyethylene • TC = Tinned Copper For Connector Cross Reference, visit www.belden.com or call Customer Service 1-800-BELDEN-1. For audio and video cable assemblies, visit the Belden Web site for a list of Belden Certified Asssemblers.

Color Code Chart

	ouo onan										
Cond.	Color	Cond.	Color	Cond.	Color	Cond.	Color	Cond.	Color	Cond.	Color
1	Red	3	Blue	5	Yellow	7	Orange	9	Violet	11	Pink
2	Green	4	White	6	Brown	8	Grav	10	Black	12	Tan

VideoFLEX $^{\circ}$ Snake Cable for Precision Analog and Digital (cont.) RG-6U and RG-59/U Type

Description	Part	UL NEC/	Standard	Lengths	Stand Unit W		Conductor (stranding)	Nomi Core		Shielding	Nominal		Nom. Imp.	Nom. Vel.		ninal citance		Nominal Itenuatio	
Description	No.	C(UL) CEC Type	Ft.	m	Lbs.	kg	Diameter Nom. DCR	Inch	mm	Materials Nom. DCR	Inch	nm	inip. (Ω)	of Prop.	pF/Ft.	pF/m	MHz	dB/ 100 Ft.	dB/ 100m
RG-6/U Ty	ре • 1	8 AWG S	olid .04	0" Bare	Coppe	r • D	uofoil + 95	5% Tin	ned (Copper Bra	aid Shie	ld							
Gas-inject	ed Fo	am HDP	E Insul	ation •	Overa	all M	atte Blac	k PV	C Jac	cket (Colo	r Code:	See	char	t belo	w)				
SDI/HDTV Digital Video 75°C (1694A Bundled)	7710A	NEC: CMR CEC: CMG FT4	3 5 10		52.4131.5 14.8273.0) ' .25 M'	Coax 0	.57 Duofo D: + 95% .99 TC Bra 2.8Ω/N 9.2Ω/k	6 id ∕I'				2% 16. o 3 GHz.		1 3.6 10 71.5 135 270 360 540 720	.2 .5 .7 1.6 2.1 3.1 3.5 4.4 5.0	.7 1.6 2.3 5.2 6.9 10.2 11.5 14.4 16.4
	7711A 7712A	NEC: CMR CEC: CMG FT4 NEC:	5 5	00 30	52.4 174.0 04.8 339.0 52.4 209.5) 154. 5 95.	1 as above	.25	Coax 0I 57 6 80 4	.99 above)		_				750 1000 1500 2500 3000 4500	5.1 6.0 7.4 9.3 10.9 14.7	16.7 19.7 24.3 30.5 35.8 48.2
		CMR CEC: CMG FT4	10	00 30	04.8 440.0	200.	0 as above		Coax 01 57 6	o: as .99 above)								
	7713A	NEC: CMR	10 5 10		52.4 450.0 04.8 878.0				80 4 Coax OI	.57 same	1.386	35.2	20						

Color Code Chart

CMG FT4

Cond.	Color	Cond.	Color	Cond.	Color	Cond.	Color	Cond.	Color
1	Red	3	Blue	5	Yellow	7	Orange	9	Violet
2	Green	4	White	6	Brown	8	Gray	10	Black

.257 6.99

above

above

Video Triax Cable

RG-59/U Type

	Part	UL NEC/	Standard	Lengths		dard Veight	Conductor (stranding)	Non Core	ninal e OD	Shielding	Nomi	nal OD	Nom.	Nom. Vel.		ninal itance		Nominal Itenuatio	
Description	No.	C(UL) CEC Type	Ft.	m	Lbs.	kg	Diameter Nom. DCR	Inch	mm	Materials Nom. DCR	Inch	mm	lmp. (Ω)	of	pF/Ft.	pF/m	MHz	dB/ 100 Ft.	dB/ 100m

22 AWG Stranded (19x34) .031" Bare Copper Conductor • Double Bare Copper Braid Shields (95% Coverage)

Foam Po	lyethylene	Insulation	Belflex®	Jacket	(Red, Yellov	v, Gre	en, B	ue, Purple	or Bla	ck) Po	lyethy	lene l	nsulati	on bet	ween l	3raids	
High-Flex 75°C	1857A	— 500 1000	152.4 42 304.8 86	.5 19.3	22 AWG (19x34) .031" BC 14.0Ω/M' 45.9Ω/km	.143	3.63	(2) BC Braids 95% Coverage Inner: 2.5Ω/M' 8.2Ω/km Outer: 1.6Ω/M' 5.3Ω/km	.360	9.14	75	79%	17.0 0 3 GHz.	55.8	1 3.6 10 71.5 135 270 360 540 720 750 1000 1500	.3 .5 .8 2.2 3.1 4.5 5.4 6.8 8.1 8.4 10.1 13.3	1.0 1.6 2.6 7.2 10.2 14.8 17.7 22.3 26.6 27.6 33.1 43.6
Suitable for Outdo	or applications: Bl	lack for permanent in	stallations, all colo	rs for field o	leployable use.										2250 3000	17.6 21.4	57.7 70.2

BC = Bare Copper • DCR = DC Resistance • HDPE = High-density Polyethylene • PE = Polyethylene • TC = Tinned Copper

For Connector Cross Reference, visit www.belden.com or call Customer Service 1-800-BELDEN-1. For audio and video cable assemblies, visit the Belden Web site for a list of Belden Certified Asssemblers.

Video Triax Cable (cont.)

RG-59/U Type

Dan seintine	Part	- · · · · ·	Standard	Lengths		dard Veight	Conductor (stranding)	Nom Core		Shielding	Nomir	nal OD	NOIII.	Nom. Vel.	Nom Capac			Nominal tenuatio	
Description	No.	C(UL) CEC Type	Ft.	m	Lbs.	kg	Diameter Nom. DCR	Inch	mm	Materials Nom. DCR	Inch	mm	lmp. (Ω)	of Prop.	pF/Ft.	pF/m	MHz	dB/ 100 Ft.	dB/ 100m

20 AWG Solid .032" Bare Copper Conductor • Double Bare Copper Braid Shields (80% Coverage)

				oppo. o				10.0		(,						
Gas-i	njected I	Foan	n HDP	E Insula	ation • B	lack P	olyethylen	ie Ja	cket	(Polyethyle	ne Ins	ulation	n betv	ween E	Braids))			
80°C	8232	! □	_	500 1000 2000	152.4 31 304.8 60 609.6118	.0 27.3	20 AWG (solid) .032" BC 10.0Ω/M' 32.8Ω/km	.145	3.68	(2) BC Braids 95% Coverage Inner: $2.5\Omega/\text{M}'$ $8.2\Omega/\text{km}$ Outer: $2.8\Omega/\text{M}'$ $9.2\Omega/\text{km}$				83% of 8232, s 5 MHz t			1 3.6 10 71.5 135 270 360 540 720 750 1000	.3 .6 .9 2.1 3.0 4.2 4.8 5.9 7.0 7.1 8.3	1.0 2.0 3.0 6.9 9.8 13.8 15.7 19.4 23.0 23.3 27.2
	Outdoor and Di Aerial application				nger wire.												1500 2250 3000	10.5 13.4 15.9	34.4 44.0 52.2

20 AWG Solid .032" Bare Copper Conductor • Double Bare Copper Braid Shields (80% Coverage)

	00		oppo, o	011000				P 0		1110100 (007		0.490	,						
Gas-inje	cted Foa	am HDPI	E Insula	ation •	Bla	ck P\	C Jacket	(PVC	Insul	ation betwe	en B	raids)							
75°C 60°C (UL)	8232A	NEC: CMR CEC:	1000	304.8	68.0	30.8	20 AWG (solid) .032"	.145	3.68	(2) BC Braids 95% Coverage	.315	8.00	75	83%	16.2	53.1	1 3.6 10 71.5	.3 .6 .9 2.1	1.0 2.0 3.0 6.9
		CMG FT4					BC 10.0Ω/M' 32.8Ω/km			Inner: 2.5Ω/M' 8.2Ω/km Outer: 2.8Ω/M' 9.2Ω/km	see 8	88232.		of 8232A, 5 MHz ti			135 270 360 540 720 750 1000 1500 2250 3000	3.0 4.2 4.8 5.9 7.0 7.1 8.3 10.5 13.4 15.9	9.8 13.8 15.7 19.4 23.0 23.3 27.2 34.4 44.0 52.2

20 AWG Solid .032" Bare Copper Conductor • Double Bare Copper Braid Shields (95% Coverage)

					-					(,			,						
Gas-inj	jected Foa n	1 HDPE	Insula	tion •	Belfi	ex J	Jacket (Red,	Yellov	w, Gr	een, Blue or	r Blac	k) Poly	ethyle/	ene Ins	ulatio	า betw	een B	raids	
75°C	1856A	_	1000	304.8		37.7	, ,	.145	3.68	(2) BC Braids 95% Coverage Inner: 2.5Ω/M' 8.2Ω/km Outer: 1.6Ω/M' 9.2Ω/km	.360	9.14	75	83% 5 MHz to	16.2	53.1	1 3.6 10 71.5 135 270 360 540 720	.3 .6 .8 2.2 3.0 4.2 4.8 5.9 6.9	1.0 1.8 2.7 7.2 9.8 13.8 15.7 19.4 22.6
Suitable for 0	utdoor applications: E	Black for per	manent insta	llations, all	colors fo	or field	deployable use.										750 1000 1500 2250 3000	7.1 8.8 12.0 16.4 20.4	23.3 28.9 39.4 53.8 66.9

22 AWG Stranded (19x34) .031" Bare Copper Conductor • Double Bare Copper Braid Shields (95% Coverage)

											-					•				
Foam	Polyeth	ylene	Insu	lation •	Belfle	Ja	cket	(Red, Yellow,	Gree	n, Blu	e, Purple o	r Blac	k.) Po	lyethy	rlene Ir	nsulatio	on betv	veen E	Braids	
High-Flex	185	7A	_	500	152.4		19.3	22 AWG	.143	3.63	(2) BC Braids	.360	9.14	75	79%	17.0	55.8	1 3.6	.3 .5	1.0 1.6
75°C	=Ruuuv	70		1000	304.8	86.0	39.1	(19x34) .031" BC			95% Coverage							10 71.5	.8 2.2	2.6 7.2
		Commo						14.0Ω/M'			Inner: 2.5Ω/M'	100%	Sweep	tested.	5 MHz t	o 3 GHz.		135 270	3.1 4.5	10.2 14.8
								45.9Ω/km			8.2Ω /km Outer:							360 540	5.4 6.8	17.7 22.3
											$1.6\Omega/M'$ $5.3\Omega/km$							720 750	8.1 8.4	26.6 27.6
											0.022/1111							1000 1500	10.1 13.3	33.1 43.6
Suitable for	Outdoor applic	cations: Bla	ack for p	ermanent ins	stallations, all	colors	for field	deployable use.										2250 3000	17.6 21.4	57.7 70.2

BC = Bare Copper • DCR = DC Resistance • FEP = Fluorinated Ethylene Propylene • HDPE = High-density Polyethylene

Contact the Belden Customer Service Department for a Comprehensive Connector Cross Reference. 1-800-BELDEN-1. Request quotations of cables not listed.

BELDEN

Video Triax Cable (cont.) RG-11/U Type

Description	Part	UL NEC/	Standard	Lengths		dard Veight	Conductor (stranding)	Nom Core		Shielding	Nomir	nal OD	Nom.	Nom. Vel.		ninal itance		lominal tenuatio	
Description	No.	C(UL) CEC Type	Ft.	m	Lbs.	kg	Diameter Nom. DCR	Inch	mm	Materials Nom. DCR	Inch	mm	lmp. (Ω)	of Prop.	pF/Ft.	pF/m	MHz	dB/ 100 Ft.	dB/ 100m

15 AWG Stranded (19x27) .064" Bare Copper Conductor • Double Bare Copper Braid Shield (95% Coverage)

Gas-inje	cted Foan	1 HDPE	E Insulati	on • Belfl	ex Jac	ket (Red,	Yellow	, Gree	n, Blue, Pu	urple o	r Black) Poly	yethyle	ne Ins	ulation	betwee	n Bra	aids
High-Flex	1858A	_	500	152.4 80.5	36.5	15 AWG	.312	7.92	(2) BC Braids	.520	13.20	75	78%	17.3	56.8	1	.1	.5
75°C			1000	304.8157.0	71.2	(19x27)			95%							3.6	.3	1.0
						.064"			Coverage							10	.5	1.6
	- A					BC			Inner:							71.5	1.2	3.9
						3.1Ω/M'			1.8Ω/M'							135	1.8	5.9
						8.9Ω/km			$5.2\Omega/\text{km}$	100%	Sweep t	tested.	5 MHz to	3 GHz.		270	2.6	8.5
						0.022,			Outer:							360	3.1	10.2
									1.4Ω/M'							540	3.9	12.8
									4.6Ω/km							720	4.7	15.4
									4.052/KIII							750	4.8	15.7
																1000	5.7	18.7
																1500	7.3	23.9
																2250	9.4	30.8
Suitable for Out	door applications:	Black for pe	rmanent install	ations, all colors	for field dep	loyable use.										3000	11.2	36.7

Plenu	m • Foam l	FEP Tefl	on® Ins	ulation • I	Black	Fluoroco	polyr	ner J	acket (Flu	oroco	polym	er Ins	sulatio	n betv	veen E	Braids)		
125°C	1859A	NEC: CMP CEC: CMP FT6	500 1000	152.4 66.5 304.8134.0	30.2 60.9	15 AWG (19x27) .064" BC 3.1Ω/M' 8.9Ω/km	.285	7.24	(2) BC Braids 95% Coverage Inner: 1.4Ω/M' 4.6Ω/km Outer: 1.4Ω/M' 4.6Ω/km	.406	10.30 6 Sweep	75 tested.	80% 5 MHz to	16.5 o 3 GHz.	54.1	1 3.6 10 71.5 135 270 360 540 720 750 1000 1500	.1 .2 .5 1.3 1.9 3.0 3.6 4.5 5.4 5.6 6.6 8.5	.5 .7 1.6 4.3 6.2 9.8 11.8 14.8 17.7 18.4 21.6 27.9
	Outdoor and Direct Aerial applications v			nger wire.												2250 3000	10.9 13.1	35.8 43.0

14 AWG Solid .064" Bare Copper Conductor • Double Bare Copper Shield (95% Coverage)

Gas-ir	njected Foa	m HDPI	E Insula	ation	• Bla	ck Po	lyethylen	e Ja	cket	(Polyethyler	ne Ins	ulation	betv	veen E	Braids)				
80°C	8233	_	500	152.4	63.0	28.6	14 AWG	.285	7.24	(2) BC Braids	.475	12.07	75	84%	16.1	52.8	1	.2	.7
			1000	304.8		55.5	(solid)			95%							3.6	.3	1.0
-Aunti			2000	609.6	240.0	109.1	.064"			Coverage							10	.4	1.3
							BC			Inner:							71.5	1.1	3.6
dinining.							2.5Ω/M'			1.6Ω/M'	100%	Sweep	tactad	5 MHz to	3 GHz		135	1.5	4.9
							$8.2\Omega/km$			$5.2\Omega/\text{km}$	100 /	омиссь	iosicu.	J IVII IZ U	J J GITZ.		270	2.3	7.5
										Outer:							360	2.7	8.9
										1.4Ω/M'							540	3.5	11.5
										$4.6\Omega/km$							720	4.2	13.8
																	750	4.3	14.1
																	1000	5.2	17.1
																	1500	7.1	23.3
																	2250	9.6	31.5
Suitable for	Outdoor and Direct B	urial applicati	ons.														3000	12.0	39.4

BC = Bare Copper • DCR = DC Resistance • FEP = Fluorinated Ethylene Propylene • HDPE = High-density Polyethylene

Teflon is a DuPont Trademark.

Video Triax Cable (cont.)

RG-11/U Type

Dan seintine	Part	OL NEO/	Standard	Lengths	Stan Unit V	dard Veight	Conductor (stranding)	Nom Core		Shielding	Nomir	nal OD	Nom.	Nom. Vel.	Nom Capac	inal itance		Nominal tenuatio	
Description	No.	C(UL) CEC Type	Ft.	m	Lbs.	kg	Diameter Nom. DCR	Inch	mm	Materials Nom. DCR	Inch	mm	lmp. (Ω)	of Prop.	pF/Ft.	pF/m	MHz	dB/ 100 Ft.	dB/ 100m

14 AWG Solid .064" Bare Copper Conductor • Two Bare Copper Braids (95% Shield Coverage)

Gas-ii	njected Foa	ım HDPE	Insul	ation	• Bla	ck P\	/C Jacket	(PVC	Insula	tion betwee	n Bra	ids)							
80°C	8233A	NEC:	1000	304.8		64.5	14 AWG	.285	7.24	(2) BC Braids	.475	12.07	75	84%	16.1	52.8	1	.2	.7
		CMR CEC:	2000 4000	1219.2	240.0 574.0	109.1 260.9	(solid) .064"			95% Coverage							3.6 10	.3 .4	1.0 1.3
		CMG FT4	4000	1213.2	014.0	200.5	BC			Inner:							71.5	1.1	3.6
Annual Control							2.5Ω/M'			1.6Ω/M'	100%	6 Sween	tested	. 5 MHz t	n 3 GHz		135	1.5	4.9
							$8.2\Omega/km$			5.2Ω/km	1007	о отгоср	tootou.	. 0 141112 0	0 0 GI12.		270	2.3	7.5
										Outer:							360	2.7	8.9
										1.4Ω/M'							540	3.5	11.5
										$4.6\Omega/km$							720	4.2	13.8
																	750	4.3	14.1
																	1000	5.2	17.1
																	1500	7.1	23.3
																	2250	9.6	31.5
																	3000	12.0	39.4

BC = Bare Copper • DCR = DC Resistance • HDPE = High-density Polyethylene • PE = Polyethylene

For Connector Cross Reference, visit www.belden.com or call Customer Service 1-800-BELDEN-1. For audio and video cable assemblies, visit the Belden Web site for a list of Belden Certified Asssemblers.

 $For additional \ sweep-tested \ digital \ video \ Triax \ Cables, see \ the \ Belden \ Master \ Catalog \ and/or \ www.belden.com.$

Digital Audio and Video Composite Camera Cables for ENG EFP Applications

RG-59U Type Coax

Bara dallar	Part	OL IILO	Standard	Lengths		dard Veight	Conductor (stranding)	Nom Core		Shielding	Ove Nomir	rall nal OD	NOIII.	Nom. Vel.	Nom Capac			Nominal Itenuatio	on
Description	No.	C(UL) CEC Type	Ft.	m	Lbs.	kg	Diameter Nom. DCR	Inch	mm	Materials Nom. DCR	Inch	mm	lmp. (Ω)	of Prop.	pF/Ft.	pF/m	MHz	dB/ 100 Ft.	dB/ 100m

(2) RG-59 Type SDI Coax (1505A) + (4) 22 AWG Audio Cables (9451 Type) • (2) 20 AWG Solid Coax with Duofoil + TC Braid Shield (95% Coverage) • (4) Jacketed 22 AWG STP Audio Cables

Insulation	n: Gas-lı	njected	Foam	Polyth	ylene	(Co	ax) and Po	lypro	pyle	ne (Pairs)	• M	atte B	Black	Over	all P	VC Ja	cket		
300V 60°C	1347A	NEC: CMR CEC: CMG FT4	500 1000	152.4 304.8	108.5 232.0	105.5	(2) Coax: 20 AWG (solid) .034" BC 10.0Ω/M' 32.8Ω/km Jackets: Black, w	.145 Coax .233 vhite	3.68 OD: 5.92	Duofoil + TC Braid 95% Shield Coverage 3.8Ω/M' 12.5Ω/km	.630	16.0		83% Sweep tes to 4.5 GH		53.5	1 3.6 5 7 10 67.5 71.5	.3 .6 .6 .7 .9 2.1 2.1	1.0 2.0 2.1 2.4 3.0 6.7 6.9
						R	(4) Pairs: 22 AWG (7x30) .030" BC 14.1Ω/M' 46.2Ω/km Jackets: Brown, ed, Orange, Yello		1.93 OD: 3.43	Each Pair: Beldfoil Shielded 100% Shield Coverage w/22 AWG TO Train Wire 14.3 Ω/M' 46.9 Ω/km			45	66%	35.0	114.8	88.5 100 135 143 180 270 360 540 720 750 1000 1500 2000 2250 3000 4500	2.2 2.3 2.7 2.8 3.1 3.8 4.4 5.5 6.4 6.5 7.6 9.3 10.9 11.6 13.4 16.4	7.2 7.5 8.9 9.2 10.2 12.5 14.4 18.0 21.0 21.3 24.9 30.5 35.8 38.1 44.0 53.8

BC = Bare Copper • DCR = DC Resistance • STP = Shielded Twisted Pairs • TC = Tinned Copper

For Connector Cross Reference, visit www.belden.com or call Customer Service 1-800-BELDEN-1. For audio and video cable assemblies, visit the Belden Web site for a list of Belden Certified Asssemblers. For additional sweep-tested digital video Triax Cables, see the Belden Master Catalog and/or www.belden.com.

21

Audio and Video Composite Camera Cable

SMPTE 311M HDTV Cables

Single-mode Fiber with Copper Conductors

Description	Part	UL NEC/ C(UL) CEC	Standar	d Lengths		ndard Weight	Conductor (stranding)		ninal e OD	Shielding Materials	Nomir	nal OD	Nominal Attenuation	
Description	No.	Type	Ft.	m	Lbs.	kg	Nom. DCR	Inch	mm	Nom. DCR	Inch	mm	dB/1000 Ft.	dB/km
4 Power Conduct	ors •	SM Fiber	w/ 24	and 2	20 AW	G Strar	nded (7x32 and	19x32) Tinne	d Copper	• Over	all 95%	6 TC Braid S	Shield
PVC Insulation •	Black	Belflex	Jacke	t										
75°C	7804R	NEC: CMR CEC:	328 500 1000	100.0 152.4 304.8	33.5 50.0 98.0	15.2 22.7 44.5	(2) Fibers: SM/125μ/900μ (core/clad/buffer)	.079	2.00	36 AWG TC Braid 95% Shield	.362	9.20	.14	.45
	(M) (M)	CMG FT4	1640 3280	500.0 1000.0	155.8 321.4	70.8 146.1	(2) Cond.: 24 AWG (7x32) .024" Tinned Copper 23.3Ω/M' 76.4Ω/km	.050	1.27	Coverage 2.9Ω/M' 9.5Ω/km			r counts/diamete ecial order.	ers
							(4) Cond.: 20 AWG (19x32) .037" Tinned Copper 8.8Ω/M'	.063	1.60					

2 Power Conductors • SM Fiber w/ 24 and 16 AWG Stranded (7x32 and 65x34) Tinned Copper • Overall 95% TC Braid Shield

28.9Ω/km

o°C	7804C	NEC:	328	100.0	32.0	14.5	(2) Breakout	.079	2.00	38 AWG	.362	9.20	.14	.45
		CMR CEC: CMG FT4	500 1000 1640 3280	152.4 304.8 500.0 1000.0	46.0 87.0 140.0 288.0	20.9 39.5 63.6 130.9	Fibers: SM/125µ/900µ (core/clad/buffer)			TC Braid 95% Shield Coverage 2.8Ω/M'				
	STILLY (SO		3200	1000.0	200.0	130.9	(2) Cond.: 24 AWG (7x32) .024" Tinned Copper 23.3Ω/M' 76.4Ω/km	.050	1.27	9.2Ω/km		conductor o	counts/diameters al order.	
							(2) Cond.: 16 AWG (65x34) .059" Tinned Copper 4.3Ω/M' 14.1Ω/km	.093	2.36					

TC = Tinned Copper

Field Deployable Tactical Fiber Optic Cables

Single-mode and Multimode Fiber

Applications

- ENG vehicles
- Outdoor news, sporting or other events
- Digital camera transmission
- Military communications
- Re-deployable communications
- Mining and industrial applications

Product Description

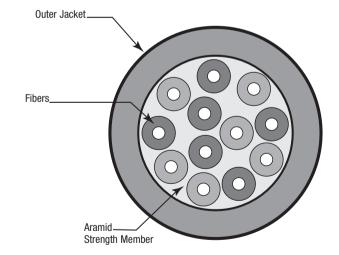
Small and lightweight with a rugged jacket, Tactical Cable provides a durable design for repeated deployment and retrieval cycles and a superior level of crush resistance. Designed to military standards.

Jacket Material	UV-resistant PU
Buffer	Polyester
Strength Member	Aramid Yarn
Color Code	
Jacket	Black
Fiber/Buffer	Per EIA/TIA 598-C
Fiber/Buffer 1	Blue
Fiber/Buffer 2	Orange
Fiber/Buffer 3	Green
Fiber/Buffer 4	Brown
Fiber/Buffer 5	Slate
Fiber/Buffer 6	White
Fiber/Buffer 7	Red
Fiber/Buffer 8	Black
Fiber/Buffer 9	Yellow
Fiber/Buffer 10	Violet
Fiber/Buffer 11	Rose
Fiber/Buffer 12	Aqua

Specifications

Temperature Range	
Storage	-70 to +85°C
Operating	-55 to +85°C
Crush Resistance (EIA-455-41)	440 N/cm
Impact Resistance (EIA-455-25)	200 Impacts @ 2.2 N-m
Cyclic Flexing (EIA-455-104)	2000 cycles, min.
Min. Bend Radius	
Installation	15 x OD
Long Term	8 x OD

Optical Specifications


Single-mode Enhanced*	
Operating Wavelength (nm)	1310/1550
Max. Attenuation Tight Buffered (dB/km)	0.80/0.50
Multimode 62.5/125 µm Std./1Gbe	
Operating Wavelength (nm)	850/1300
Max. Attenuation Tight Buffered (dB/km)	3.50/1.25

^{*}Low water peak Single-mode suitable for CWDM use complies with ITU G.652.c/d

Belden Part Number		No. of		Diameter	Wei	ght	Max. Ins	tall Load
Single-mode	62.5/125 μm	Fibers	Inch	mm	Lbs./ 1000'	kg/ km	Lbs.	N
B96566	B96571	2	0.210	5.5	19	28	330	1468
B96639	B96551	4	0.225	5.7	21	31	330	1468
B96567	B96572	6	0.240	6.0	23	34	330	1468
B96570	B96575	12	0.255	7.1	31	46	330	1468

Please contact the Technical Support Group for proper connectivity integration and installation guidance. All optical fiber products can be supplied in compliance with RoHS regulations. Please contact Inside Sales for more details. Other glass types, strand counts and jacket formulations (and colors) are available by special order. Contact your authorized Belden distributor (www.belden.com) or call Belden Customer Service at 1.800.235.3361 (1.800.BELDEN.1)

Fiber Bundle Detail

TIA/EIA-568-B.2, Category 5e

Enhanced Category 5e Bonded-Pair Cables

The following pages represent a short list of the Belden cables available to support Ethernet.

Please see our website **www.belden.com** for our extensive selection of cables, connectivity and hardware.

Description	Part	UL NEC/ C(UL) CEC	No.	Standard	l Lengths		dard Wt.	Nom O	ninal D	Freq.	Max. Atten.	Min. PSUM	Min. PSUM ACR	Min. PSUM ELFEXT	Input	Min. RL
Description	No.	Type	of Pairs	Ft.	m	Lbs.	kg	Inch	mm	(MHz)	(dB/ 100m)	NEXT (dB)	(dB/ 100m)	(dB/ 100m)	Imped. (Ω)	(dB)

Cat 5e • 24 AWG Bonded-Pairs Stranded (7x32) BC Conductors • Rip Cord • See Color Code Chart (below)

Heavy-Duty Jacke	ted •	Polyolefin	Inst	ulation	• .030"	Flexib	le Mat	te Black	PVC	Jacket	• Cate	gory	5e			
	1304/	<i>-</i>	4	1000	304.8	27.8	12.6	.245	6.22	1	2.4	62.3	63.3	60.8	100±15	20.0
	20 20			500	152.4	14.4	6.5			4	4.9	53.3	52.3	48.7	100±15	23.0
	20									8	6.9	48.8	46.1	42.7	100±15	24.5
	20									10	7.8	47.3	43.9	40.8	100±15	25.0
										16	9.9	44.3	39.1	36.7	100±15	25.0
Rip Cord	25									25	12.5	41.3	34.1	32.8	100±15	24.3
KIP COTA										31.25	14.1	39.9	31.3	30.9	100±15	23.6
										62.5	20.4	35.4	21.6	24.8	100±15	21.5
Neutrik EtherCon⊚ compatible										100	26.4	32.3	17.1	20.8	100±15	20.1
RJ-45 Compatible • -40°C Cold Bo	end															
U.S. Patents 5,606,151; 5,734,126	and 5,7	63,823														
Jacket sequentially marked at 2 ft.	intervals	Third party verif	ied to T	IA/EIA-568-B.	2, Category 5	ie										

Cat 5e • 24 AWG Bonded-Pairs Stranded (7x32) BC Conductors • Rip Cord • See Color Code Chart (below)

Upjacketed • Polyolefin	Insulation	• PVC	Inner	Jacket	• .035	" Matte	Blaci	k Flexib	le PVC	Oute	r Jacl	ket •	Cate	gory 5	e
1305A	_	4	1000 3	04.8	39.5	18.1	.295	7.49	1	2.4	62.3	63.3	60.8	100±15	20.0
			500 1	52.4	19.8	9.0			4	4.9	53.3	52.3	48.7	100±15	23.0
									8	6.9	48.8	46.1	42.7	100±15	24.5
									10	7.8	47.3	43.9	40.8	100±15	25.0
							Nominal (Core OD:	16			39.1	36.7	100±15	25.0
Din Cord							.242	6.14	25			34.1	32.8	100±15	24.3
Rip Cord									31.25			31.3	30.9	100±15	23.6
									62.5	20.4	35.4	21.6	24.8	100±15	21.5
Neutrik EtherCon® compatible									100	26.4	32.3	17.1	20.8	100±15	20.1
RJ-45 Compatible • -40°C Cold Bend															
U.S. Patents 5,606,151 and 5,734,126															
Jacket sequentially marked at 2 ft. intervals	· Third party verifie	d to TIA/EI	IA-568-B.2, C	Category 5e											

ACR = Attenuation Crosstalk Ratio • DCR = DC Resistance • ELFEXT = Equal Level Far-end Crosstalk • NEXT = Near-end Crosstalk • PSUM = Power Sum • RL = Return Loss • UTP = Unshielded Twisted Pair(s)

Color Codes

Pair No.	Color Combination	Pair No.	Color Combination
1	White/Blue Stripe & Blue	3	White/Green Stripe & Green
2	White/Orange Stripe & Orange	4	White/Brown Stripe & Brown

DataTwist® 350 UTP, Category 5e Enhanced Category 5e Bonded-Pair Cables

Danasiakias	Part	UL NEC/		Standard	Lengths	Stan Unit	dard Wt.	Nom O		Max. DCR	Max. DCR	Cap.	Freq.	Max. Atten.	Min. PSUM		Min. PSUM		Min.
Description	No.	C(UL) CEC Type	of Pairs	Ft.	m	Lbs.	kg	Inch	mm	(Ω/ 100m)	Unbal. (%)	Unbal. (pF/ 100m)	(MHz)	(dB/ 100m)	NEXT (dB)	ACR (dB/ 100m)	(dB/	impeu. (Ω)	(dB)

24 AWG Bonded-Pairs Solid Bare Copper Conductors • Rip Cord • See Color Code Chart (below)

Non-Plenum •	Polyolef	in Insu	latio	n • PVC	Jacke	t (Red,	Orange	, Wł	nite,	Black,	Yellov	v, Greei	າ, Blue	, Purp	le,	Light (Gray o	r Gray)	
	1700A	NEC:	4	U-1000	U-304.8	22.0	10.0	.200	5.08	9.0	3.0	66.0	1		5.3	63.3	60.8	100±12	
	_	CM		1000†	304.8	22.0	10.0						4		6.3	52.3	48.8	100±12	
	≡	CEC:		1640†	500.0	36.1	16.4						8		1.8	46.1	42.7	100±12	
		CM		3000†	914.4	63.0	28.6						10		50.3	43.9	40.8	100±12	
	_	OIII		3280†	1000.0	72.2	32.8						16		17.3	39.1	36.7	100±12	
	_			3200 1	1000.0	12.2	32.0								14.3	34.1	32.8	100±15	
7	≓														12.9	31.3	30.9	100±15	
Din Coud													62.5	6.8	38.4	21.6	24.9	100±15	21.5
Rip Cord													100 2	21.7	35.3	17.1	20.8	100±15	20.1
													155 2	7.7	32.5	4.7	16.9	100±18	19.0
													200	32.0	8.08	3.0	14.7	100±18	19.0
													250	6.4	29.3	_	12.8	100±20	18.0
													350	4.3 2	27.2	_	9.9	100±22	17.0

^{†1000} ft. put-up not available in Gray. 3000 ft. put-up available in Red, Blue, White or Lt. Gray only. 1640 ft. available in Lt. Gray or Blue only. 3280 ft. available in Lt. Gray only. Third party verified to TIA/EIA-568-B.2, Category 5e

Jacket sequentially marked at 2 ft. intervals. Features Descending Length Marking. • U.S. Patents 5,606,151 and 5,734,126

Plenum • FE	P Teflon [®]	^o Insulati	on •	Flamar	rest®	Jacket	(Availal	ole in F	Red, (Orange,	Gray,	Yellow	, Greer	n, Blu	e, P	urple,	Natural	or Blac	ck)
	1701A	NEC:	4	U-1000	U-304	.8 23.0	10.5	.195	4.95	9.0	3.0	66.0	1	2.0	65.3	63.3	60.8	100±12	20.0
		CMP		1000	304	.8 24.0	10.9						4	4.0	56.3	52.3	48.8	100±12	23.0
		CEC:		3000†	914	.4 69.0	31.3						8		51.8	46.1	42.7	100±12	24.5
		CMP													50.3	43.9	40.8	100±12	25.0
		0											16		47.3	39.1	36.7	100±12	25.0
~ D															44.3	34.1	32.8	100±15	24.3
/												3	31.25	1.6	42.9	31.3	30.9	100±15	23.6
Rip Cord													62.5		38.4	21.6	24.9	100±15	21.5
															35.3	17.1	20.8	100±15	20.1
															32.5	4.7	16.9	100±18	19.0
†3000 ft. put-up availa	ble in Blue or N	atural only											200		30.8	3.0	14.7	100±20	19.0
Third party verified to T															29.3	_	12.8	100±20	18.0
Jacket sequentially mai			es Desc	ending Length	Marking	• U.S. Pater	nts 5,606,1	51 and 5,7	734,126				350	14.3	27.2	_	9.9	100±22	17.0

ACR = Attenuation Crosstalk Ratio • DCR = DC Resistance • ELFEXT = Equal Level Far-end Crosstalk • NEXT = Near-end Crosstalk • PSUM = Power Sum • RL = Return Loss • UTP = Unshielded Twisted Pair(s)

Color Codes

Pair No.	Color Combination
1	White/Blue Stripe & Blue
2	White/Orange Stripe & Orange

Pair No.	Color Combination
3	White/Green Stripe & Green
4	White/Brown Stripe & Brown

MediaTwist® TIA/EIA-568-B.2-1, Category 6 Enhanced Category 6 Bonded-Pair Cables

Description	Part	UL NEC/	No.	Standard Lengths		Standard Unit Wt.		Nominal OD		Max. DCR	Max. DCR	nco Cap.	Freq.	Max. Atten.	Min. PSUM	Min. PSUM			Min. RL
Description	No.	Type	of Pairs	Ft.	m	Lbs.	kg	Inch	mm	(Ω/ 100m)	Unbal. (%)	Unbal. (pF/	(MHz)	(dB/ 100m)	NEXT (dB)	ACR (dB/	(dB/	Imped. (Ω)	(dB)

23 AWG Bonded-Pairs Solid Bare Copper Conductor • Rip Cord • See Color Code Chart (below)

Non-Plenum • Polyole	efin Ins	ulatio	ı • PVC	Jacket	t (Blue,	Red,	Yellov	v, Ora	ange,	Green	, Gold	Purple	White	, Black o	or Gray)	
1872A	NEC:	4	1000	304.8	37.0	16.8	.365	9.27	9.0	3.0	49.2	1	1.9 72	2.3 70	64.8	100±12	20.0
	CMR		A-1000*	A-304.8	37.0	16.8	Χ	Χ				4	3.7 63	3.3 59	52.8	100±12	23.0
	CEC:						.165	4.19				8		3.8 53	46.7	100±12	
	CMR													'.3 51	44.8	100±12	
	0													.3 46	40.7	100±12	25.0
														.4 42	36.8	100±15	
												00).9 39	34.9	100±15	
Rip Cord														.4 30	28.9	100±15	
•														2.3 25	24.8	100±15	
												.00 =		.5 14	20.9	100±15	
														'.8 10	18.8	100±15	
*A-1000 ft. put-up not available in Black														5.3 3	16.8	100±20	
Features Descending Length Marking.												-		5.2 >0	15.2	100±20	
Jacket sequentially marked at 2 ft. interv														.2 —	13.9	100±22	
U.S. Patents 5,606,151; 5,734,126; 5,82													0.0		_	100±32	
Third party verified to TIA/EIA-568-B.2-1,	, Category 6											500 4	9.0 -		_	100±32	14.0

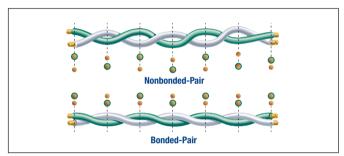
Plenum • FEP To	eflon®	Insulation	•	Flamarre	est® Ja	cket (B	lue, Na	atural,	Gray,	Red,	Yellow	, Orange	, Greer	ı, Gold	l, Purple	, White	or Blac	k)
•	1874A	NEC:	4	1000	304.8	37.0	16.8	.365	9.27	9.0	3.0	49.2	1 .	.9 72	.3 70	64.8	100±12	20.0
		CMP		A-1000 **	A-304.8	38.0	17.2	Х	Х				4 3	3.7 63	.3 59	52.8	100±12	23.0
	1	CEC:						.165	4.19				8	5.3 58		46.7	100±12	
	3	CMP												5.9 57		44.8	100±12	
		0												7.5 54		40.7	100±12	
	}													0.5 51		36.8	100±15	24.3
	1).6 49		34.9	100±15	23.6
Rip Cord														5.4 45		28.9	100±15	21.5
Tilp Cord														0.8 42		24.8	100±15	21.0
													155 25			20.9	100±15	21.0
														0.0 37		18.8	100±15	21.0
*A-1000 ft. put-up not availab		ζ.												2.8 36		16.8	100±20	18.0
Features Descending Length N														5.2 35		15.2	100±20	18.0
Jacket sequentially marked at	t 2 ft. inter	vals.												9.8 34	.2 —	13.9	100±22	17.0
U.S. Patents 5,606,151; 5,734	4,126; 5,82	21,467												3.0 -		_	100±32	14.0
Third party verified to TIA/EIA-	-568-B.2-1	, Category 6											500 49	9.0 -		_	100±32	14.0

ACR = Attenuation Crosstalk Ratio • DCR = DC Resistance • ELFEXT = Equal Level Far-end Crosstalk • NEXT = Near-end Crosstalk • PSUM = Power Sum • RL = Return Loss • UTP = Unshielded Twisted Pair(s)

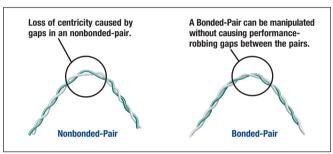
Color Codes

Pair No.	Color Combination
1	White/Blue Stripe & Blue
2	White/Orange Stripe & Orange

Pair No.	Color Combination
3	White/Green Stripe & Green
4	White/Brown Stripe & Brown



10GX® UTP Cable, TIA/EIA-568-B.2, Category 6A Enhanced Category 6A Bonded-Pair Cables


10GX Bonded Pair, 4-pair, 23 AWG, CMR, Category 6A											
10GX32 0041000	Yellow	305 m (1000 ft)	Spool	27 spools/pallet	8235 m (27000 ft)						
10GX32 0061000	Blue	305 m (1000 ft)	Spool	27 spools/pallet	8235 m (27000 ft)						
10GX32 0081000	Gray	305 m (1000 ft)	Spool	27 spools/pallet	8235 m (27000 ft)						
10GX32 0091000	White	305 m (1000 ft)	Spool	27 spools/pallet	8235 m (27000 ft)						

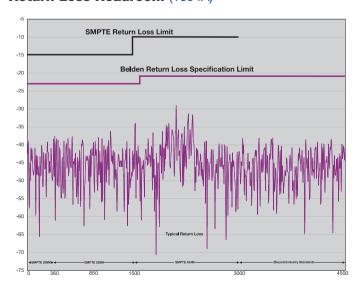
10GX Bonded-Pair, 4-pair, 23 AWG, CMP, Category 6A											
10GX33 0041000	Yellow	305 m (1000 ft)	Spool	27 spools/pallet	8235 m (27000 ft)						
10GX33 D151000	Blue	305 m (1000 ft)	Spool	27 spools/pallet	8235 m (27000 ft)						
10GX33 0081000	Gray	305 m (1000 ft)	Spool	27 spools/pallet	8235 m (27000 ft)						
10GX33 0091000	White	305 m (1000 ft)	Spool	27 spools/pallet	8235 m (27000 ft)						

10GX44 LSZH version is available upon request

The distance between the conductors, or the conductor-to-conductor centricity, should remain fixed and stable along the length of the twisted pair. Only Bonded-Pair cables offer this type of stability.

The slightest manipulation of a nonbonded-pair (left) can cause gaps between the conductors of the pair and impair electrical performance. Gaps cannot form between the conductors in a Bonded-Pair (right), resulting in consistent electrical performance.

Recommended Transmission Distance at Serial Digital Data Rates


Data Rate:	143	Mb/s	177	Mb/s	270	Mb/s	360	Mb/s	1.5	Gb/s	3.0	Gb/s
Spec:	SMPTE	259M	ITU-R I	3T. 601	SMPT	E 259M	SMPTI	259M	SMPT	E 292M	SMPT	E 424M
Cable Part Number	Comp SD-SDI	oosite (NTSC)		Composite SD-SDI (PAL)		Component SD-SDI		Widescreen SD-SDI		-SDI	1080p/50-60 3G-SDI	
	Ft.	m	Ft.	m	Ft.	m	Ft.	m	Ft.	m	Ft.	m
179DT	542	165	498	152	416	127	362	110	115	35	81	25
1865A*	686	209	627	191	517	158	446	136	134	41	90	27
1855P	986	301	904	276	746	227	640	195	190	58	125	38
1855A	1022	312	932	284	781	238	680	207	215	66	149	45
1505F	1173	358	1060	323	858	262	732	223	220	67	147	45
1506A***	1354	413	1243	379	1030	314	887	270	265	81	177	54
1694F	1460	445	1312	400	1066	325	916	279	280	85	189	58
1505A**	1440	439	1317	401	1105	337	958	292	304	93	210	64
1695A	1706	520	1566	477	1276	389	1104	337	322	98	211	64
1694WB****	1733	528	1597	487	1333	406	1161	354	363	111	249	76
1694A****	1791	546	1650	503	1371	418	1188	362	371	113	256	78
1694D	1791	546	1650	503	1371	418	1188	362	371	113	256	78
7732A	2575	785	2335	712	1929	588	1638	499	451	137	283	86
1794A	2276	694	2078	633	1746	532	1510	460	469	143	320	98
7732LL	2400	732	2202	671	1818	554	1580	482	515	157	354	108
7731A	2791	851	2613	796	2146	654	1871	570	580	177	393	120

The serial digital interconnect standards are designed to operate where the signal loss at 1/2 the clock frequency does not exceed the approximate loss values listed below. The recommended length values shown are based on typical attenuation values for the cables listed and the following criteria: Maximum length = 30 dB loss at 1/2 the clock frequency: SMPTE 259M, PAL, Widescreen. Maximum length = 20 dB loss at 1/2 the clock frequency: SMPTE 292M and SMPTE 424M.

The bit error rate (BER) can vary dramatically as the calculated distances are approached. BER is dependent on receiver design and the losses of the actual coax used. Distribution and routing equipment manufacturers should be contacted to verify their maximum recommended transmission.

- * Includes cables that use 1855A as a constituent, such as 7787A, 7788A, 7789A, 7790A, 7791A, 7792A, 1855S3, 1855S5, 1855S6
- ** Includes cables that use 1505A as a constituent, such as 7794A, 7795A, 7796A, 7798A, 1505S3, 1505S5, 1505S6
- *** Includes cables that use 1506A as a constituent, such as 1283S3, 1283S5, 1283S6

Return Loss Headroom (1694A)

^{****} Includes cables that use 1694A as a constituent, such as 7710A, 7711A, 7712A, 7713A, 1694S3, 1694S5, 1694SB, 1694WB, 1694D